Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жесткость деталей при кручении

Для увеличения жесткости деталей при конструировании механизма рекомендуется а) заменять, где это возможно, деформацию изгиба растяжением и сжатием б) уменьшать плечи изгибающих и скручивающих сил и линейные размеры деталей, испытывающих напряжения изгиба и кручения в) для деталей, работающих на изгиб, применять такие формы сечений, которые имеют наибольшие моменты инерции / и сопротивления W г) для деталей, работающих на кручение, применять замкнутые (кольцевые) сечения, имеющие наибольшие моменты инерции и сопротивления при кручении д) уменьшать длину деталей, работающих на сжатие (продольный изгиб) и ж) выбирать для деталей материалы с высоким значением модуля упругости (Е или G). При этом необходимо учитывать, что для различных марок стали характеристики прочности (сг , а , a i, и т. п.) имеют разное значение при почти одинаковых значениях модулей упругости (Е или G).  [c.156]


Жесткость деталей при изгибе 197 при кручении 184 при растяжении 268  [c.563]

Для увеличения жесткости деталей при конструировании механизма рекомендуется а) заменять, где это возможно, деформацию изгиба растяжением и сжатием б) уменьшать плечи изгибающих и скручивающих сил и линейные размеры деталей, испытывающих напряжения изгиба и кручения в) для деталей, работающих на изгиб, применять такие формы сечений, которые имеют наибольшие моменты инерции J и сопротивления W д) для деталей, работающих на кручение, применять замкнутые (кольцевые) сечения, имеющие наибольшие моменты инерции и сопротивления при кручении г) уменьшать длину деталей, работающих на сжатие и растяжение и ж) выбирать для деталей материалы с высоким значением модуля упругости ( или О).  [c.179]

Приводные валы, кроме кручения, испытывают также изгиб, вызываемый действием усилий между зубьями или натяжением ремней, цепей, а также весом самих валов и посаженных на них деталей. При упрощенном расчете валов учитывается только кручение, но при этом допускаемые напряжения заведомо занижаются, например для валов из углеродистой стали [т]=12-э 15 МПа, Если вал длинный, то его рассчитывают на прочность и жесткость и выбирают большее значение.  [c.125]

Удельная жесткость их при изгибе и кручении выше удельной жесткости алюминиевых сплавов на 20% и сталей на 50%, что важно для деталей, работающих на продольный и поперечный изгиб.  [c.138]

Шпоночные соединения (рис. 105, а, 6, в) отличаются большой простотой, удобством сборки и разборки. Однако их главный недостаток заключается в том, что шпоночные пазы ослабляют сечение деталей и уменьшают жесткость при кручении, что нередко приводит к разрушению деталей соединения.  [c.228]

Расчет валов и осей на жесткость выполняют в случаях, когда их упругие деформации могут существенно влиять на работу связанных с ними деталей, например, подшипников, зубчатых колес, отсчетных устройств и др. Различают жесткость валов при изгибе и кручении. Результаты исследований показали, что наибольшее влияние на общую жесткость системы точных механизмов оказывает жесткость при кручении, которая характеризуется утлом закручивания цилиндрического участка под действием крутящего момента  [c.188]

По форме поперечного сечения тонкостенные стержни делят на открытые (швеллер и др.) и закрытые (трубы с различной формой контура поперечного сечения). Открытые тонкостенные стержни имеют весьма малую жесткость при кручении по сравнению с изгибной жесткостью. Поэтому крутящие моменты, возникающие в элементах сооружений и деталях машин, даже очень малые по сравнению с изгибающими, могут вызвать в них большие деформации и опасные напряжения.  [c.269]


Напряжения, возникающие в деталях кузова при кручении в 2—3 раза больше, чем при изгибе. Оптимальной считается жесткость, при которой угол закручивания на метр длины не более 15.  [c.501]

Так, конструкции таких деталей, как панели крыши и дверей кабины, весьма специфичны вследствие предъявляемых к ним требований в отношении механической жесткости, прочности, стойкости к вибрациям и коррозии. Такие детали, как лонжероны, выполняют обычно функцию элементов, воспринимающих нагрузку, в связи с чем они должны также удовлетворять требованиям жесткости, прочности, стойкости к вибрациям и дополнительным требованиям прочности при кручении.  [c.69]

Повышенная жесткость деталей, работающих на растяжение-сжатие, в конечном счете, обусловлена лучшим использованием материала при этом виде нагружения. В случае изгиба и кручения нагружены преимущественно крайние волокна сечения. Предел нагружения наступает, когда напряжения в них достигают опасных значений, тогда как сердцевина остается недогруженной. При растяжении-сжатии напряжения одинаковы по всему сечению материал используется полностью. Предел нагружения наступает, когда напряжения во всех точках сечения теоретически одновременно достигают опасного значения. Кроме того, при растяжении-сжатии действие нагрузки не зависит от длины детали деформации детали пропорциональны первой степени ее длины, В случае же изгиба действие нагрузки зависит от расстояния между плоскостью действия изгибающей силы и опасным сечением деформации здесь пропорциональны третьей степени длины.  [c.211]

В ряде случаев, когда упругие деформации вала отрицательно влияют на работоспособность связанных с ними деталей или частота вращения вала близка к критической, производят проверочные расчеты вала на жесткость. Расчет сводится к определению прогибов и углов поворота поперечных сечений вала при изгибе, углов закручивания при кручении вала, а также к сравнению их с допускаемыми значениями.  [c.185]

Большинство валов передач разрушаются вследствие низкой усталостной прочности. Поломки валов в зоне концентрации напряжений происходят из-за действий переменных напряжений. Для тихоходных валов, работающих с перегрузками, основным критерием работоспособности служит статическая прочность. Жесткость валов при изгибе и кручении определяется значениями прогибов, углов поворота упругой линии и углов закрутки. Упругие перемещения валов отрицательно влияют на работу зубчатых и червячных передач, подшипников, муфт и других элементов привода, понижая точность механизмов, увеличивая концентрацию нагрузок и износ деталей.  [c.147]

При изгибе и кручении можно до известной степени повысить жесткость обычным путем — увеличением диаметральных размеров детали с одновременным утонением ее стенок. Однако с увеличением моментов инерции одновременно увеличиваются и моменты сопротивления деталей, что сопровождается уменьшением напряжений. Таким образом, этот путь  [c.179]

Критерии работоспособности и расчета волновых передач. В результате экспериментальных исследований и опыта эксплуатации установлено, что основные причины потери работоспособности волновых передач—разрушение гибких колес и гибких подшипников качения, генераторов недостаточная жесткость генераторов и жесткость колеса изнашивание зубьев, которое зависит от напряжений смятия перегрев передачи. По всем перечисленным критериям работоспособности вести проектировочный расчет передачи затруднительно. Из всех деталей передачи наиболее уязвимо гибкое колесо. В нем возникают переменные напряжения изгиба, вызванные воздействием генератора и напряжения кручения под действием вращающего момента. Поэтому при расчете на прочность определяют главный параметр волновой передачи — внутренний посадочный диаметр гибкого колеса d (см. рис. 9.47)  [c.232]

Уравнения движения привода выписаны на основе уравнений Лагранжа, а рассеяние энергии в системе учтено в виде модели вязкого трения. Численные значения коэффициентов затухания колебаний определили расчетным путем с последующим уточнением в процессе экспериментального исследования. При расчете параметров дифференциальных уравнений движения учли, что баланс крутильной податливости складывается из податливостей валов па кручение, контактных деформаций сопряженных деталей, податливостей опор и изгибных деформаций валов, приведенных к крутильной податливости. Уравнения движения главного привода, имеющего переменные массы и жесткости, представили  [c.131]


В настоящее время хорошо изучена структурная анизотропия материалов, обусловленная способом изготовления заготовок (прокаткой, ковкой, протяжкой, резанием и кристаллизацией). В зависимости от направления вырезки образцов и места приложения нагрузки изменяются жесткость и прочность заготовок при испытании на изгиб, кручение и растяжение. В то же время имеется мало данных по использованию геометрической анизотропии для улучшения свойств поверхности и поверхностного слоя деталей.  [c.19]

При совместной работе на кручение двух деталей, например при шлицевом соединении (рис. 11) или при прессовой посадке, принимают, что внутренний вал закручивается с каждой стороны на длине я 0,25 . При подсчете жесткости средней части учитывают жесткость втулки.  [c.422]

При работе двигателя вал нагружается силами давления газов, а также силами инерции движущихся возвратно-поступательно и вращающихся деталей, вызывающими значительные напряжения кручения и изгибные напряжения. Кроме того, возникают напряжения от крутильных колебаний. Шейки вала испытывают переменное давление, обусловливающее значительную работу трения и износ шеек. Вследствие этого коленчатый вал двигателя должен обладать высокой прочностью, жесткостью и износостойкостью трущихся поверхностей (шеек) при относительна небольшой массе (масса вала составляет 7—15 % массы двигателя).  [c.95]

В общепринятых методиках расчета зубчатых передач не учитывается жесткость соединения зубчатого колеса с валом при определении неравномерности распределения нагрузки по длине зацепления. Между тем крутильная жесткость соединения существенно влияет на такое распределение. С одной стороны, это влияние может быть определено при рассмотрении кручения деталей, входящих в передачу [13], с другой стороны, оно выявляется при рассмотрении относительного перекоса зубчатых колес, имеющих зубчатые соединения с валами.  [c.160]

Для увеличения прочности и жесткости на изгиб и кручение при минимальном весе пустотелых деталей следует выбирать по возможности минимальную толщину стенок. Устойчивость тонких стенок достигается за счет их подкрепления ребрами.  [c.494]

Крутящий момент возникает чаще всего у базовых деталей вследствие действия на направляющие пары сил при этом, как было показано выше, поперечное сечение искажается. Это искажение может быть исключено введением диагональных ребер, что повышает жесткость на кручение. Наиболее рациональной формой поперечного сечения (особенно применительно к крутильной жесткости) наряду с прямоугольной формой с двойными диагональными ребрами является форма поперечного сечения, показанная на рис. 52, Н.  [c.56]

Корпусные детали — траверсы (поперечины) и перекладины продольно-строгальных и продольно-фрезерных станков, рукава радиально-сверлильных, хоботы горизонтально-фрезерных станков — служат для поддержки узла инструмента или являются элементом рамной системы, образующей портальную конструкцию станков. Консоли горизонтально- и вертикально-фрезерных станков, столы вертикально-сверлильных станков служат для поддержки узла с закрепленной обрабатываемой деталью (заготовкой). Поддерживающие корпусные детали должны обеспечить высокую жесткость при работе на изгиб и кручение. При работе консолей важно правильно выбрать форму поперечного сечения и форму балки по длине. Так, рукав радиально-сверлильного станка (см. рис. 17, а) у основания имеет больший момент инерции для восприятия изгибающих моментов. Поперечное сечение представляет собой замкнутый профиль, имеющий высокую жесткость при изгибе и кручении.  [c.221]

Какими преимуществами обладают стандартизованные детали (сборочные единицы) при конструировании и выполнении ремонтных работ 7. Что такое стандартизация и унификация деталей и сборочных единиц машин и каково их значение в развитии машиностроения 8. Какие основные требования предъявляются к машинам и их деталям 9. Назовите материалы, получившие наибольшее применение в машиностроении, и укажите общие предпосылки выбора материала для изготовления детали. 10. Какое напряжение называется допускаемым и от чего оно зависит 11. От чего зависит размер предельного напряжения и требуемого (допускаемого) коэффициента запаса прочности 12. Дайте определения цикла напряжений, среднего напряжения цикла, амплитуды напряжения и коэффициента асимметрии цикла напряжений. 13. Какой цикл напряжений называется симметричным, отнулевым, асимметричным 14. Могут ли в детали, работающей под действием постоянной нагрузки, возникнуть переменные напряжения 15. Укажите основные факторы, влияющие на значение допускаемого напряжения и коэффициента запаса прочности. 16. Что следует понимать под табличным и дифференциальным методами выбора допускаемых напряжений 17. Запишите формулу для вычисления допускаемого напряжения при симметричном цикле и статическом нагружении детали. Дайте определения величин, входящих в эти формулы. 18. Запишите формулу для вычисления значения расчетного коэффициента запаса прочности при симметричном цикле напряжений для совместного изгиба и кручения. 19. Укажите основные критерии работоспособности и расчета деталей машин. Дайте определения прочности и жесткости. 20. Сформулируйте условия прочности и жесткости детали.  [c.20]

В существующих станках основными деталями для осуществления передачи вращательного движения и крутящего момента служат валы. При работе валы претерпевают сложные деформации — кручение, изгиб, растяжение и сжатие, и поэтому к ним предъявляются особые требования жесткости для сохранения нормальных условий работы механизмов и деталей, передающих движение на вал. В зависимости от назначения и условий работы бывают валы самых различных форм и конструктивных размеров. На фиг. 33 приведены схемы работы валов и их формы. Крутящие моменты и движение вращения передаются на станках главным образом посредством зубчатых колес.  [c.51]


В качестве общего замечания к данному примеру отметим, что кольцевые сечения очень обманчивы при зрительной оценке на прочность. Прочность сечения таких деталей пропорциональна квадрату, момент сопротивления изгибу и кручению — кубу, а момент инерции — четвертой степени диаметра. Это обстоятельство не всегда учитывают при конструировании. При оценке прочности на растяжение-сжатие и изгиб, а также при оценке жесткости конструктор обычно впадает в ошибку, заключающуюся в преувеличении размеров кольцевых деталей.  [c.112]

Инструментальные блоки испытывают деформацию при изгибе или кручении деталей и деформацию контактных поверхностей элементов блока в местах соединений. Деформации первого вида противостоит объемная жесткость, второго вида — контактная жесткость. Объемная жесткость определяется по формулам сопротивления материалов. Контактная жесткость, влияющая на деформацию блока в месте приложения силы, зависит от величины и направления действую-  [c.308]

Инструментальные блоки испытывают деформацию при изгибе или кручении деталей и деформацию контактных поверхностей элементов блока в местах соединений. Деформации первого вида противостоит объемная жесткость, деформации второго вида —  [c.606]

Для обеспечения нормальной работы деталей, расположенных на валах и осях, необходимо ограничить их смещения, вызываемые деформациями изгиба и кручения. Это достигается при расчете валов на жесткость.  [c.240]

Б этом соотношении GiJi и G2/2 — соответственно жесткости сечений первой и второй деталей при кручении.  [c.32]

Для повышения жесткости без увеличения массы деталей необходимо усиливать участки сечений, подвергающиеся при данном виде нагружения наиболее высоким напряжениям, и удалять ненагруженные II малонагруженные участки. При изгибе напряжены сечения, наиболее удаленные от нейтральной оси. При кручении напряженьт внешние волокна по направлению к центру напряжения уменьшаются и в центре они равны нулю. Следовательно, целесообразно всемерно развивать наружные размеры, сосредоточивая материал на периферии и удаляя его из центра.  [c.229]

Оребрение деталей, подвергающихся кручению. При нагружении цилиндрических и близких к ним по форме деталей крутящим моментом продольные прямые ребра 1 крайне незначительно увеличивают жесткость детали (рис. 127). Скорее такие ребра вредны, так как они подвергаются изгибу (в плоскости, перпендикулярной грани р бер), вызывающему в них повышенные напряжения. При одностороннем кручений выгодно применять косые ребра 2, которые под действием крутящего момента работают. на сжатие, сильно увелитавая жесткость детали (частный случай приме-ненпя пртпщша раскосных связей).  [c.239]

При разработке основ выбора геометрических элементов орнамента авторами принято, что размеры геометрических элементов поверхности существенно малы по сравнению с конструктивными размерами детали. Известно, что общая деформация литых деталей включает упругую и остаточную деформацию. Упругая деформация обусловлена перемещением и искажением (депланацией) сечения элемента в процессе обработки детали. При прочих равных условиях с увеличением толщины и площади сечения стенки доля упругой деформации, в том числе депланацин, уменьшается. Поэтому в толстостенных литых деталях этот вид деформации практически не учитывается. Однако при уменьшении толщины и площади сечения стенки и увеличении количества сочленений различных геометрических элементов доля упругой деформации, в особенности депланации, резко возрастает. Метод литья в отличие от других методов получения заготовок имеет значительное преимущество— возможность варьировать процессом кристаллизации и получать на поверхности рациональные геометрические элементы, создавая наиболее благоприятное сочетание свойств материалов и геометрических особенностей отливок. При уменьшении поперечного сечения бруса или пластины уменьшается его статический момент, а с ним и жесткость конструкции при изгибе и кручении. Поэтому геометрические элементы в виде тонких стержней с гладкой поверхностью рационально применять для литых деталей, работающих в условиях растягивающих и сжимающих напряжений. Геометрический элемент в виде тонкостенного бруса открытого профиля, обладающего малой жесткостью при кручеиии, целесообразно применять для литых деталей, воспринимающих нагружение изгибом, растяжением и сжатием. Геометрические элементы могут иметь и более сложную конфигурацию, обусловливающую анизотропию свойств в различных направлениях.  [c.19]

Увеличение коэффициента изгибной жесткости плиты с орнаментом только за счет мелкокристаллической структуры может достигать 17%. Для многих конструкций литых деталей особенно большое значение имеет жесткость при кручении. Расчеты показывают, что соотношение коэффициентов жесткости при кручении для плит гладких и с двусто-  [c.29]

Был заложен срок надежной работы автомобиля, равный 15 годам, и было принято, что нормальное рабочее напряжение в отдельных деталях должно составлять примерно V3 предела текучести или 0,1 % напряжения, разрушающего материал, из которого изготовлена данная деталь. Жесткость конструкции автомобиля при кручении и изгибе должна быть по крайней мере в 2 раза больше соответствующих параметров современных традиционных одноэтажных автобусов Пи-эс-ви (PSV), построенных в Великобритании. Целью проекта было также выровнить напряжения по всей конструкции, особенно на участках конструкции крыши, расположенных над дверными проемами. Кроме того, [параметры конструкции, находящейся под нагрузкой, должны удовлетворять нормам и правилам, изложенным в следующих документах Нагрузочные  [c.70]

Нижняя поверхность фаски клапана на высоте до 1,5 мм имеет угол наклона 45°, совпадающий с углом наклона фаски седла. Верхняя часть фаски имеет угол наклона 43° 15 и при посадке клапана на седло с ним не соприкасается. Но мере отработки ресурса двигателя поверхность прилегания фаски клапана к седлу непрерывно увеличивается в результате износа седла и главным образом вследствие вытяжки головки н стержня клапана под нагрузкой. К исходу межремонтного срока клапан обычно прилегает к седлу всей поверхностью фаски. В дальнейшем нижняя кромка фаски клапана начинает отставать от седла, между ними образуется щель, и фаска, подвергаясь более интенсивному действию горячих газов, сравнительно быстро разрушается в результате перегрева и прогара вследствие ухудшения теплоотдачи в седло. Таким образом, дифференщ1альная фаска ускоряет приработку и обеспечивает герметичность посадки клапана и межремонтный ресурс. Повышение износостойкости деталей зависит не только от общей жесткости конструкции, но и от местной. Нагрузочная способность цилиндрических и конических колес тем выше, чем равномернее распределена нагрузка по длине зуба. Причинами неравномерности, кроме неточностей изготовления деталей передачи и сборки их, являются изгиб и кручение валов, деформация опор и корпусов. Изгиб валов вызывает перекос осей колес, вследствие чего возникает концентрация нагрузки у одного из краев зуба.  [c.182]

Расчет вала на прочность не исключает возможности возникновения деформаций, недопустимых при его эксплуатации. Большие углы закручивания вала особенно опасны при передаче им. переменного во времени момента, так как при этом возникают опасные для его прочности крутильные колебания. В технологическом оборудовании, например металлорежущих станках, недостаточная жесткость на кручение некоторых элементов конструкции (в частности, ходовых винтов токарных станков) приводит к нарушению точности обработки изготовляемых на этом станке деталей. Поэтому в необходимых случаях вал1>1 рассчитывают не только на прочность, но и на жесткость.  [c.200]


Опоры (связи) вибрационных конвейеров служат для поддерживания (подвешивания) желоба и обеспечения колебаний в соответствии с динамическим расчетом. На конвейерах применяют плоские единичные рессоры (пластины) и пакеты (набор пластин). Поперечная жесткость пластин должна быть на несколько порядков меньше их продольной жесткости. В качестве амортизаторов и упругих связей широко применяют детали, работающие на сдвиг, сжатие и кручение, и резинометаллические блоки. Резиновая часть блоков отличается высокой эластичностью и стойкостью. При разработке резинометаллических деталей необходимо обеспечить возможность свободной деформации резины, обладающей несжимаемостью в замкнутом пространстве. Упругими связями могут также быть витые цилиндрические и плоские пружины. Для изготовления рессор и пружин выбирают специальные термообработанные стали 55С2, 60С2 и 60С2Н2А с допускаемым напряжением изгиба а = ЮОч-110 МПа. Толщина рессорной стали 6 = = 2ч-6 мм. Плоские рессоры рассчитывают на жесткость с и прочность по напряжению на изгиб  [c.245]

Резиновые амортизаторы используются для уменьшения амплитуды усилий при вынужденных колебаниях циклического (периодического) или импульсного (ударного) возбуждения от стационарных недостаточно уравновешенных объектов на фундамент (активная изоляция) или для уменьшения амплитуды деформации от вибрирующего корпуса к монтированным на нем приборам (пассивная изоляция). Амортизаторы работают на сжатие, на сдвиг, на кручение или на сочетание этих видов деформаций. Амортизаторы, работающие только на растял ение, применяются редко, так как свойственная резине ползучесть под нагрузкой приводит в данном случае к значительному изменению начальных габаритов конструкции. Резина, сжимаемая между двумя металлическими плитами, проявляет различную жесткость в зависимости от наличия или отсутствия смазки и формы (вида) образца резины. На практике смазку не применяют, но резина, зажатая между двумя металлическими листами, все же имеет некоторое скольжение, и потому края ее истираются. Во избежание этого к рабочим поверхностям резины привулканпзовывают тонкие металлические листы. Такой резиновый блок используют как конструктивную деталь амортизатора (рис. 9.1). Для обеспечения достаточной осадки и должной жесткости конструкции применяют амортизаторы, составленные из нескольких, наложенных один на другой резиновых блоков.  [c.263]

В процессе работы двигателя коленчатый вал нагружается силами давления газов, а также силами инерции движущихся возвратно-поступательно и вращающихся деталей. Эти силы вызывают значительные напряжения кручения, изгибные напряжения и крутильные колебания, вследствие чего щейки вала испытывают переменное давление, которое вызывает значительную работу трения и износ шеек. Поэтому коленчатый вал должен обладать высокой прочностью, жесткостью и износостойкостью трущихся поверхностей при относительно небольшой массе, составляющей не более 15 % массы двигателя. Коленчатые валы изготавливаются из качественных углеродистых или легированных сталей ковкой или штамповкой, а также литьем из высококачественного чугуна или стали.  [c.153]


Смотреть страницы где упоминается термин Жесткость деталей при кручении : [c.378]    [c.140]    [c.112]    [c.182]    [c.272]    [c.268]    [c.196]    [c.82]   
Прикладная механика (1985) -- [ c.184 ]



ПОИСК



Жесткость деталей

Жесткость деталей корпусных (станков кручения

Жесткость при кручении



© 2025 Mash-xxl.info Реклама на сайте