Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подшипники качения сферические

Здесь определяют предварительные размеры валов, расстояния между деталями, реакции опор и намечают тины и размеры подшипников. Подшипники качения принимаю для опор центральных валов — шариковые радиальные легкой серии, для опор сателлитов — шариковые или роликовые сферические средней серии.  [c.152]

После выполнения расчетов приступают к составлению эскизного проекта редуктора. Определяют предварительные размеры валов, расстояния между деталями, реакции опор и намечают типы и размеры подшипников. Подшипники качения принимают для опор центральных валов — шариковые радиальные легкой серии, для опор сателлитов — шариковые или роликовые сферические средней серии.  [c.222]


Для самоустановки сателлитов по неподвижному центральному колесу 4 применяют сферические подшипники качения 7.  [c.186]

Частицы сферической формы обнаружены среди частиц износа подшипников качения станков непосредственно перед их разрушением.  [c.87]

В заключение необходимо отметить суш,ественное влияние подшипников качения на динамику самого ротора. Подшипники качения обладают нелинейной упругой характеристикой. Так, сближение центров внутреннего и наружного колец при действии на подшипник радиальной нагрузки R для стандартных подшипников со сферическими телами качения можно определить по формуле [8]  [c.254]

Подвижное сочленение звеньев осуществляется часто не с помощью кинематической пары, а посредством кинематического соединения — введением между звеньями промежуточных тел (например подшипники качения (рис. 1.3, е), шари-ко-винтовые механизмы (рис. 1.3, ж) и др. Сферический подшипник допускает три вращения, так же как сферический шарнир, радиальный подшипник — одно вращение, как Цилиндрический шарнир. Род кинематического соединения соответствует роду надлежащей кинематической пары.  [c.7]

Типовые схемы установки валов в подшипниках качения приведены на фиг. 108. На фиг- 108, а w б показаны способы установки валов на радиальных шариковых подшипниках. По такой же схеме устанавливают двухрядные сферические подшипники. Наружное кольцо одного из подшипников следует закреплять неподвижно, другому нужно оставлять свободу осевого перемещения для компенсации тепловых расширений.  [c.205]

В гильотинных ножницах кривошипный вал устанавливается на глухих или разъёмных бронзовых подшипниках скользящего трения. Все остальные валы устанавливаются на подшипниках скольжения или качения. Подшипники скольжения ставятся с кольцевой смазкой. Подшипники качения применяются бочкообразные или сферические, роликовые, которые дают возможность самоустанавливаться при прогибе длинного вала, и хорошо противостоят осевым усилиям. Маховик, как правило, устанавливается в ножницах последних моделей на подшипниках качения, но в этом случае применяют подшипники с глубокими канавками, воспринимающими не только радиальные, но и осевые усилия. Установка маховиков на подшипниках скольжения нецелесообразна, так как даже при хорошей смазке трудно избежать нагрева подшипников при холостом ходе.  [c.724]


Примерами вращательных и шаровых пар являются радиальные и сферические подшипники качения. Примеры поступательных и винтовых пар представлены на фиг. 12.  [c.429]

ПОДШИПНИКОВ качения а—однорядных б—двухрядных сферических  [c.21]

Подшипники каждого из этих типов в свою очередь делятся конструктивно на однорядные, двухрядные и многорядные. Двухрядные подшипники со сферической внутренней поверхностью наружного кольца называются самоустанавливающимися. Такой тип подшипников допускает некоторый перекос оси вала относительно корпуса подшипника. Однорядные шариковые и роликовые подшипники без сферических поверхностей, не допускающие перекосов, называют обычными подшипниками качения.  [c.137]

Диаметр маховичка для перемещения затвора выбирается по суммарному крутящему моменту, равному моменту трения в резьбе, в сальнике и моменту трения в результате соприкосновения сферического конца шпинделя 1 и сменного затвора 2 (см. рис. 3.54, 3.55). Для уменьшения момента трения (см. рис. 3.56) в передачах к шпинделю 2 при больших давлениях уплотняемой среды втулку / монтируют на подшипниках качения.  [c.337]

Сборочно-формующий барабан состоит из секторов 5, которые шарнирно, посредством системы рычагов 6, соединены са ступицей 22, расположенной на полом валу 23. Внутри вала 23 в подшипниках качения установлен ходовой винт с правой и левой резьбой, на котором смонтированы гайки, жестко соединенные с подвижными кольцевыми дисками 7. При вращении вала 14 крутящий момент передается ходовому винту, гайки которого перемещают диски 7, а последние, воздействуя на систему 6, радиально перемещают (складывают или раздвигают) сектора 5. На секторах установлены сферические пружины и мостики, которые перекрывают промежутки между секторами при увеличении наружного диаметра барабана.  [c.149]

Наиболее ответственным узлом центробежного возбудителя является подшипник (или подшипники) вала значительная центробежная сила, высокие частота враш,е-ния и вибрации самого подшипникового узла. В таких случаях обычно применяют подшипники качения с большими коэффициентами работоспособности двухрядные роликовые сферические или однорядные роликовые с короткими цилиндрическими роликами. Учитывая условия работы подшипников, их выбирают прежде всего по допустимой частоте враш,ения, которая должна превышать частоту вынужденных колебаний (рабочую частоту), и затем производят проверку долговечности. Если срок службы подшипников оказывается неприемлемо малым (например, менее шести — восьми месяцев), следует увеличить число подшипников, но при этом обеспечить одинаковую нагрузку на каждый из них.  [c.144]

Для стандартных подшипников со сферическими телами качения между деформацией и радиальной нагрузкой существует зависимость, установленная на основании контактной теории Герца [2],  [c.174]

Во всех случаях в ходовых колесах целесообразно применять сферические подшипники качения. При наземных подкрановых путях необходимо уменьшать зубчатый венец для предохранения зубьев от повреждения (диаметр венца должен быть меньше диаметра колеса).  [c.317]

Для сферических подпятников, применяемых в пятах поворотных колонн кранов, требуется высокая точность установки оси колонны, чтобы угол а конусности траектории последней (рис. VII.3.1) не вышел за пределы нормы. Увеличение угла а сверх нормы для пят со сферическими подшипниками качения ведет к образованию усталостных треш ин в сепараторах с последующим  [c.529]

Способ доводки деталей одновременно с кинематической правкой притиров используется при доводке плоских поверхностей твердосплавных неперетачиваемых пластинок режущих инструментов, пластин из магнитных сплавов, колец подшипников качения при двусторонней доводке, корпусов гидроагрегатов, корпусов насосов при односторонней доводке, сферических поверхностей, подшипниковых опор приборов, цилиндрических поверхностей плунжеров, игл распылителей и т.д. Достигаемая точность формы обработанной поверхности 0,1-3 мкм в зависимости от требований по техническим условиям.  [c.655]


Зазоры в подшипниках качения. Под зазором понимается свобода перемещения одного кольца относительно другого в радиальном и осевом направлениях в подшипниках, не имеющих регулировки (радиальных, сферических).  [c.498]

Подшипники роликовые радиальные сферические двухрядные с симметричными роликами. Основные размеры Подшипники качения. Зазоры  [c.557]

Двухрядные шарико- н роликоподшипники (рис. 18, е я ж) состоят из тех же частей, что и однорядные, но внутреннее кольцо у них имеет две параллельные дорожки качения, а дорожка качения наружно-го кольца выполнена в форме сферы. Последним обусловливается название этих подшипников — сферические. Благодаря сферической форме внутренней поверхности наружного кольца происходит свободная самоустановка подшипника в нужное положение ири небольших временных перекосах вала относительно корпуса подшипника тем самым предотвращается защемление шариков или роликов (рис. 18, з). В связи с этой особенностью сферических подшипников их называют также самоустанавливающимися. Обычные подшипники качения не терпят перекосов вала.  [c.38]

Самой распространенной конструкцией подшипников качения является однородный радиальный подшипник (рис. 42, а). Однако он допускает сравнительно небольшую нагрузку. При большой нагрузке применяют двухрядные радиальные самоустанавливающиеся подшипники (рис. 112, б). У таких подшипников беговая канавка внешнего кольца с внутренней стороны имеет сферическую поверхность, очерченную из центра оси вала. Благодаря этому при небольшом изгибе вала не нарушается нормальная работа подшипника, так как шарики свободно перемещаются в новые плоскости вращения при повороте внутреннего кольца вместе с цапфой вала.  [c.195]

Регулируемые тяги. Соединение тяг между собой и с качалками осуществляется с помощью наконечников с запрессованными сферическими подшипниками. Подшипники качения уменьшают силы трения и допускают некоторый перекос между осями тяг. Регулировка длины проводки управления тяг производится наконечниками. В целях контроля минимально допустимого захода резьбы вилки в наконечнике имеется контрольное отверстие. Длина отдельных тяг выбирается из условий сохранения их устойчивости при сжатии, исключения резонансных колебаний и удобства монтажа.  [c.107]

По конструктивным особенностям подшипники качения делятся на самоустанавливающиеся сферические (рис. 104,6, рис. 105,6, рис. 106,6) и жесткие (рис. 104,а, рис. 105,а и рис. 106,а).  [c.215]

По конструктивным особенностям подшипники качения могут быть жесткие и самоустанавливающиеся сферические.  [c.148]

На рис. 460 показаны некоторые наиболее употребительные варианты упрощенных изображений подшипников качения на сборочных чертежах. Подшипники изображают, как правило, без указания типа и конструктивных особенностей. Контуры подшипников вычерчивают сплошными основными линиями, а на изображении проводят диагонали тонкими сплошными линиями. Если необходимо указать на сборочном чертеже тип подшипника, то в контур подпшпника вписывают его условное графическое изображение по ГОСТ 2.770 — 68 (СТ СЭВ 2519 — 80), как это показано на рис. 460 (изображения радиального сферического двухрядного шариког[одшипника и роликового радиального подшипника).  [c.314]

Подшипники качения имеют условные обозначения, составленные из цифр и букв. Система основные обозначений подшипников предусмотрена ГОСТ 3189—75. В эт х обозначениях число для подшипников с внутренним диаметром 20...495 мм, состоящее из двух рядом стоящих крайних цифр справа, умноженное на 5, дает диаметр отверстия внутреннего кольца Третья цифра справа (совместно с седьмой, если она имеется) обозначает серию подшипников всех диаметров, кроме малых (до 9 мм). Основная из особо легких серий обозначается цифрой 1, легкая — 2, средняя — 3, тяжелая— 4, легкая широкая — 5, средняя широкая — 6. Четвертая цифра справа обозначает тип подщип4ика радиальный шариковый— О (если нули стоят левее последней значащей цифры, их отбрасывают), радиальный шариковый двухрядный сферический — 1 радиальный с короткими цилиндри 1ескими роликами — 2 радиальный роликовый двухрядный с([)ерический — 3 роликовый игольчатый — 4 роликовый с витыми роликами — 5 радиальноупорный шариковый — 6 роликовый конический — 7 упорный шариковый — 8 упорный роликовый — 9у Конструктивные особенности подшипников обозначаются пятой или пятой и шестой цифрами справа. Цифры, обозначающие Kia точности подшипников 6, 5, 4, 2, ставятся через тире перед у ловным обозначением подшипников цифра О не пишется.  [c.88]

Стандартные подшипники качения по основным признакам разделяют на следующие типы по форме тел качения — на шариковые (см. рис 292, а), роликовые (рис. 292, б, г) игольчатые (рис 292, д, е) в свою очередь, ролики бывают цилиндрические короткие (рис. 293, а) и длинные (рис 293, б), конические с прямолинейной образующей (рис. 293, е), сферические (рис. 293, г), бочкообразные (рис. 293, д), витые (рис. 293, е) и др. по числу рядов тел качения — на однорядные (рис. 292, а—е) двухрядные (рис. 292, ж) и четырехрядные по воспринимаемым нагрузкам — на радиальные (рис. 292, а—ж), радиально-упорные (рис. 292, з, и), упорно-радиальные и упорные (рис. 292, к, л) по важнейшему конструктивному признаку — на самоустанавливающиеся или сферические (рис. 292, ж) и несамо-устанавливающиеся. Сферические подшипники отличаются тем, что внутреннее кольцо вместе с телами, или наружное кольцо  [c.433]

По направлению воспринимаемой нагрузки подшипники качения (ПК) подразделяются на радиальные, радиально-упорные и упорные, по форме тел качения — на шариковые и роликовые. По конструктивно-вксплуатационному признаку ПК могут быть несамоустанавливающи-мнся и самоустанавливающимися (сферическими), а по числу рядов тел качения — однорядными двух- или четырехрядными и многорядными [8, 9, 16]. ПК одного и того же типа выпускают с разньщи соотношениями габаритных размеров по сериям сверхлегкой, легкой, легкой широкой, средней, средней широкой и тяжелой.  [c.391]


На рис. 13.13 изображен упорный шариковый подшипник, предназначенный для восприятия односторонней осевой нагрузки. Кольцо с внутренним диаметром df, монтируемое на вал и имеющее зазор с корпусом, называется тугим, кольцо с внутренним диаметром с1 , предназначенное для посадки в корпус и имеющее зазор с валом, называется свободным. Упорный подшипник может быть самоуста-навливающимся за счет сферической поверх1юсти базового торца. Упорные подшипники могут быть роликовыми. Для восприятия осевой нагрузки в обоих направлениях существуют двойные упорные подшипники качения.  [c.231]

Подшипники качения по направлению действия нагрузки относительно оси вращения делятся на радиальные, упорные и радиальноупорные (рис. 4.62) по размерам (щирине и наружному диаметру) на серии от особо легкой до тяжелой по точности — о г нормальной до сверхпрецизионной. В зависимости от формы тел качения подщипники делятся на шариковые и роликовые (цилиндрические, сферические, конические) по конструктивным особенностям они бывают несамоустанавливающиеся и самоустанав-ливающиеся (допускающие значительный перекос оси внутреннего кольца по отношению к оси наружного), одно-, двух-, и четырехрядные (в зависимости от числа тел качения, расположенных по ширине подшипника), со стопорными шайбами, с уплотнениями и без них.  [c.459]

На практике сферические частицы очень редко встречаются в системах скольжения с однонаправленным движением, так как в этих условиях всегда есть возможность того, что попавшая в раковину частица рапо или поздно будет из нее выбита. Достаточное количество сферических частиц образуется лишь при фреттинге и в подшипниках качения при раскрытии и закрытии усталостных трещин.  [c.101]

В металлургических цехах жидкая и густая смазки применяются для зубчатых, червячных и реечных зацеплений, подшипников скольжения (опорных и упорных), подшипников качения (шарикоподшипников, роликоподшипников и игольчатых подшипников), плоских поверхностей скольжения (направляющих поверхностей), цилиндрических направляющих втулок, сферических опорных поверхностей (подпятников) и винтовых соединений (нажимные винты и гайки, винты и гайки механизмов передвижения упоров и направляющих линеек, винты и гайки подъемных устройств укладывателей и т. д).  [c.7]

Рис. 2.89. Рациоиалыгые схемы кривошипно-ползуниого механизма. Все пять схем лишены избыточных связей. Сферический шарнир со штифтом (пара IV, схемы а и б) имеет линейчатый контакт и для передачи больших сил схема не применима. Лучше, если цилиндрическая пара JV стоит на пальце кривошипа (схема в), чем на ползуне (схема г). Пару IV труднее осуществить на подшипниках качения, поэтому ее следует заменить на пару 111 (схема д), при этом появится местная подвижность (W =2) — вращение шатуна вокруг собственной оси. Схемы гид предпочтительней. Римскими цифрами обозначен класс пары по числу вносимых условий связи. Рис. 2.89. Рациоиалыгые схемы <a href="/info/1926">кривошипно-ползуниого механизма</a>. Все пять схем лишены <a href="/info/1982">избыточных связей</a>. <a href="/info/11112">Сферический шарнир</a> со штифтом (пара IV, схемы а и б) имеет линейчатый контакт и для передачи больших сил схема не применима. Лучше, если <a href="/info/444971">цилиндрическая пара</a> JV стоит на пальце кривошипа (схема в), чем на ползуне (схема г). Пару IV труднее осуществить на <a href="/info/1111">подшипниках качения</a>, поэтому ее следует заменить на пару 111 (схема д), при этом появится <a href="/info/292068">местная подвижность</a> (W =2) — вращение шатуна вокруг собственной оси. Схемы гид предпочтительней. <a href="/info/120993">Римскими цифрами</a> обозначен класс пары по числу вносимых условий связи.
Сегментный радиальный подшипник Nomy. Подшипник представляет собой индивидуальный, аналогичный подшипнику качения комплект, элементы которого не являются взаимозаменяемыми. Подшипник состоит из внутреннего с и наружного Ь колец и вкладышей а. Опоры вкладышей расположены на внутреннем кольце, надеваемом на вал. Вкладыши вращаются относительно наружного кольца вместе с внутренним кольцом. Наружное кольцо, вставляемое в корпус, имеет внутреннюю поверхность, очерченную по сфере. Аналогичную сферическую поверхность имеют и вкладыши. Благодаря сферической форме контактной поверхности вкладышей и наружного кольца внутреннее кольцо имеет возможность самоустановки. Форма вкладышей обеспечивает работу подшипника при любом направлении вращения вала (в противоположность подшипнику по фиг. 265). При перемене направления вращения вала вкладыши меняют свою опору. Наружное кольцо изготовляется из чугуна перлитной структуры, легированного никелем внутреннее кольцо — из термообработанной Нв = ЬЩ хромоникелевой стали. Материал вкладышей — нитрированная сталь Нв = 1000 на поверхности скольжения).  [c.639]

Ленточный материал производится на линиях непрерывного действия, а подшипники из него (свертные втулки, упорные шайбы, сферические подшипники) изготовляются с помощью простых операций штамповки. Механическая обработка резанием сведена к минимуму, а исходные материалы при этом расходуются весьма экономно. Технологические процессы изготовления ленты и подшипников практически безотходные. Наружный диаметр металлофторопластовых погщшпников в 2 раза, а масса в 10-15 раз меньше, чем у соответствующих подшипников качения. Кроме того, при применении металлофторопластовых подшипников материалоемкость машин и конструкций снижается за счет уменьшения габаритов и массы корпусных деталей.  [c.24]

Подшипники качения, применяемые для установки на валах червячных колес, рассчитывают на осевую и радиальную нагрузки (комбинированную нагрузку), при этом преобладает радиальная нагрузка. Опорами вала червячного колеса могут быть радиально-упорные шарикоподшипники, регулируемые в осевом направлении (лист 19, рис. 1). Широко распространена установка конических однорядных роликоподшипников с углом контакта 10...17° на вал червячного колеса (лист 19, рис. 2). Установка конических роликоподшипников дает малодетальную технологичную конструкцию опор. Червячное зацепление регулируется перемещением вала в осевом направлении с помощью жестяных прокладок, устанавливаемых между торцами корпуса и фланцами крышек. При наличии консольных нагрузок на валу червячного колеса могут быть установлены сферические роликоподшипники лист 19, рис. 3). Два кривошипа, насаженные на концы вала, при работе редуктора создают значительный прогиб концов валов, а следовательно, и поворот вала в опорах. В таких случаях применяют самоустанавливающиеся сферические роликоподшипники. Для нормальной работы сферических подшипников в осевом направлении между наружным кольцом подшипника и торцевой крышкой необходимо предусмотреть зазоры 0,03...0,05 мм. Величина зазора должна быть согласована с допусками на смещение средней плоскости червячного колеса при монтаже передачи.  [c.60]

Для коррозионных испытаний с растягивающей нагрузкой образцов с толщиной, соответствующей или близкой реальным конструкциям, сконструирована [52] специальная установка (рис. 32). Испытываемый образец 10 с коррозионной ячейкой 11 закрепляется в тягах, соединенных с одной стороны с динамометром 10, а с другой — с силовым виетом 5. Опора 9 навинчивается на силовой винт 8 и, упираясь в короткое плечо силового рычага 7, растягивает динамометр 12 до создания в образце 10 определенного уровня напряжений. Заданный цикл изменения динамической составляющей при нагружении образца устанавливают изменением эксцентриситета кривошипа 1 при помощи ползуна 2 и длины шатуна 3 — с тендером. Вращение кривошипа 1, задаваемое на всех шести позициях установки одним электромотором, вызывает поступательное движение шатуна 3, который в свою очередь приводит в колебательное движение рычаг 4, при колебании которого подшипник качения 5 перемещается по опорной плоскости 6. Так как плоскость 6 прямолинейная, а не сферическая, перемещение по ней подшипника 5 вызывает смещение силового рычага 7 в направлении опорной плоскости. Движущийся силовой рычаг 7, воздействуя на опору 9, создает в образце циклические напряжения растяжения. Величина напряжения контролируется динамометром 4 Наибольшая нагрузка на образец может достигать 50 кН, переменная составляющая — до 50 кн. Приведенное устройство отличается от известных (например, [67]) простотой конструкции, отсутствием сложных систем электронной стабилизации скорости вращения двигателей. При его применении отпадает необходимость  [c.101]


В необходимых случаях соосность валов при соединении их упругой муфтой может быть достигнута применением сферической цапфы или самоустанавливающего-ся подшипника качения. Преимуществами упругих муфт с резиновыми эле.ментами являются тихий ход, плавная передача пускового момента и возиюж-ность компенсации значительных перекосов валов.  [c.129]


Смотреть страницы где упоминается термин Подшипники качения сферические : [c.70]    [c.92]    [c.28]    [c.156]    [c.421]    [c.118]    [c.29]    [c.223]   
Приводы машин (1962) -- [ c.306 ]

Детали машин Издание 3 (1974) -- [ c.499 , c.500 ]



ПОИСК



Подшипники качения

Подшипники качения радиальные сферические двухрядные — Характеристика 63 — Размеры

Подшипники качения радиальные шариковые радиальные сферические — Осевая игра начальная

Подшипники качения роликовые сферические

Подшипники качения шариковые сферические — Габаритные размеры

Подшипники сферические



© 2025 Mash-xxl.info Реклама на сайте