Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конические зубчатые колеса радиального зазора

Значения т стандартизованы (табл. 1 и 2), Для цилиндрических зубчатых колес радиальный зазор с = 0,25 т (при обработке долбяками и шеверами до 0,35т) для конических зубчатых колес с = 0,2т радиус закругления у корня зуба л/ = 0,4т для цилиндрических зубчатых колес и 0,2 т для конических.  [c.772]

Радиальными составляющими кинематической погрешности цилиндрических зубчатых колес в стандарте являются радиальное биение или комплексная двухпрофильная погрешность за полный оборот. Для конических зубчатых колес тангенциальные составляющие кинематической погрешности в ГОСТе 1758-56 нормируются погрешностью обката, а радиальные составляющие — биением зубчатого венца и колебаниями измерительного бокового зазора и межосевого угла за оборот.  [c.182]


Наиболее употребительные значения коэффициента высоты зуба f и коэффициента радиального зазора с конических зубчатых колес  [c.508]

Правильные формы пятна контакта без нагрузки представлены на рис, 9-39, а, с полной нагрузкой — на рис. 9-39,6. Основные погрешности зацепления прямозубых конических зубчатых колес следующие недостаточный радиальный зазор (рис. 9-39, е), межосевой угол больше расчетного (рис. 9-39, г),- межосевой угол меньше расчетного (рис. 9-39,6). Если на зубьях ведущего или ведомого колес пятна контакта расположены плотно на одной стороне зуба на узком конце, а на другой — на широком, то это свидетельствует о перекосе осей зубчатых колес.  [c.318]

При проектировании конических зубчатых колес с круговыми зубьями осевой формы II для обеспечения приблизительного постоянства ширины вершинной ленточки по всей длине зуба при определенном сочетании значений, zi и и вынужденно принимают 0 1 ва2 и 0ц2 = 0/1. допуская тем самым переменный радиальный зазор в передаче.  [c.515]

Качество сборки передач с коническими зубчатыми колесами определяется правильностью пересечения осей валов передачи, точностью углов между осями колес и величинами бокового и радиального зазоров. Отклонения б для осей конических зубчатых колес устанавливаются в зависимости от величины модуля  [c.96]

Расстояние между окружностью вершин зубьев конического зубчатого колеса и окружностью впадин сопряженного конического зубчатого колеса, измеренное по прямой, совпадающей с образующими дополнительных конусов, называют внешним радиальным зазором конической зубчатой передачи с = 0,2т.  [c.334]

Расстояние между окружностью вершин зубьев конического зубчатого колеса и окружностью впадин сопряженного колеса, измеренное по прямой, совпадающей с образующей их делительных (начальных) дополнительных конусов, называется р а -диальны м зазором. Различают внешний Се, средний и внутренний С радиальные зазоры конической зубчатой передачи, измеренные по прямым, совпадающим с образующими внешнего, среднего и внутреннего делительных (начальных) дополнительных конусов.  [c.37]

Для профилирования зубьев конических колес используют теоретическое производящее плоское колесо, которое заполняет впадины теоретического исходного колеса. При этом между поверхностью вершин теоретического исходного колеса и поверхностью впадин производящего колеса предусматривается радиальный зазор. Для получения сопряженных поверхностей зубьев колес, составляющих зубчатую пару, производящие колеса, используемые для нарезания каждого из этих зубчатых колес, должны быть совпадающими, т. е. станочные аксоиды обоих производящих колес должны совпа-  [c.132]


После установки вала-эксцентрика рекомендуется проверить зубчатое зацепление конических колес. Боковой зазор в зацеплении должен быть не менее 0,1—0,12 т, а радиальный—0,2 т,  [c.309]

В конической передаче при установке зубчатого колеса на консоли и разделении опор на фиксирующую и плавающую желательно, чтобы осевое фиксирование вала и регулирование осевой игры в подшипниках и в зацеплении осуществлялось со стороны задней опоры, доступной для регулирования осевой игры. Кроме того, поскольку передняя опора воспринимает большую часть радиальной нагрузки от усилий в зацеплении, ее стараются освободить от осевого усилия. В тех случаях, когда по конструктивным соображениям расстояние между опорами значительно, температурное удлинение вала, зафиксированного в задней опоре, происходит в сторону конической пары, что может привести к недопустимому уменьшению зазора в зацеплении и к заклиниванию подшипника в этой опоре. Поэтому в таких случаях следует под-  [c.521]

Альбом блокирующих контуров для конических зубчатых передач, построенный в системе координат дсц, а , приведен в приложении к данной книге. Он пригоден для передач, колеса которых нарезаны зубострогальными резцами с углом профиля а = 20°, а углы конусов вершин рассчитаны так, чтобы обеспечить постоянный по абсолютной величине радиальный зазор с = с т по всей ширине зубчатого венца. Высоты головок и ножек зубьев определены по формулам (6.48)—(6.50), т. е. остаются постоянными и не зависят от принятого угла зацепления Коэффициенты высоты головки зуба и радиального зазора соответствуют стандарту СЭВ 516—77 Ьд == 1 0 с = = 0,20. При построении линий ограничений по интерференции радиус скругления кромки резцов принят равным р/о = 0,3/Пе. Эта величина указана в стандарте в качестве предельно допустимой. У стандартного инструмента радиус скругления меньше и действительные линии ограничений по интерференции имеют вид, показанный на рис. 8.5, т. е. отсутствие интерференции гарантировано. В то же время даже незначительное увеличение р/о сверх указанной предельной величины может очень значительно сузить поле контура.  [c.65]

Угол конуса вершин (см. рис. 42) — это угол между осью конического колеса и образующей его конуса вершин. Поверхность конуса вершин определяет форму заготовки конического колеса. Для получения постоянного радиального зазора по всей длине зуба в современных методах расчета параметров зубьев конических колес образующая конуса вершин проходит параллельно образующей конуса впадин сопряженного зубчатого колеса (рнс. 50).  [c.63]

Для нормальной работы масляного насоса новые подшипниковые планки должны быть ориентированы относительно корпуса таким образом, чтобы оси отверстий под зубчатые колеса в корпусе насоса совпали с осями отверстий в подшипниковых планках. Операция по центровке осуществляется калибрами (технологическими зубчатыми колесами), размещаемыми в корпусе насоса (рис. 5.И). Между этими калибрами и корпусом насоса закладывают листы фольги одинаковой толщины с таким расчетом, чтобы выбрать зазор К между лысками калибров, после чего на цапфы калибров с обеих сторон надевают подшипниковые планки с подшипниками, закрепляют планки гайками и фиксируют каждую планку относительно корпуса насоса постановкой новых конических штифтов. Насос разбирают. Вместо калибров подбирают зубчатые колеса (ведущее и ведомое) так, чтобы радиальный зазор А (рис. 5.12) между колесами и корпусом насоса был в пределах 0,20—0,25 мм. Собирают насос с подобранными колесами, подшипниковыми планками 5 и /7 в сборе с подшипниками и прокладками 10 я 11. Измеряют индикаторным приспособлением осевой разбег Б зубчатых колес в корпусе насоса. При необходимости этот разбег регулируют прокладками 10 и 11, когда разбег превышает 0,25 мм, уменьшают толщину прокладок. Если прокладками не удается уменьшить разбег, то сошлифовывают поверхность К корпуса. Закрепляют подшипниковые планки и фиксируют их коническими штифтами, после чего щупом из-  [c.266]


Комплексной оценкой правильности изготовления и монтажа зубчатой передачи является отпечаток на контактной поверхности зубьев, полученный проворачиванием колес. Площадь отпечатка должна составлять 70—80% рабочей поверхности и размещаться симметрично по длине зуба в средней части профиля. Для оценки точности монтажа зубчатых цилиндрических и конических колес замеряют зазор по контактной линии зубьев, боковой и радиальный зазоры, толщину зуба. Зазор контактной линии нормируется в зависимости от класса точности передачи зубчатых колес, а радиальный и боковой зазоры и толщина зубьев должны быть указаны в рабочих чертежах зубчатой пары.  [c.57]

При конструировании опор с радиально-упорными подшипниками необходимо предусматривать в них регулировку осевого зазора (осевой игры ). Допускаемые пределы осевой игры даются в табл. 15.1 [27]. Регулировку зацепления конической зубчатой пары и червячного колеса с червяком рекомендуется производить совместным двусторонним осевым перемещением опор и вала.  [c.168]

В случае конического колеса его смещение в радиальном направлении за счет зазора в посадке на вал на величину р приводит к биению зубчатого венца Е, измеренному в направлении, нормальном к делительному конусу  [c.95]

Указания всех остальных параметров первой части таблицы (число зубьев, направление наклона зубьев, степень точности и вид сопряжения) соответствуют ГОСТ 9250—59 без каких-либо изменений. Что касается указания стандартизованного исходного контура, ничего не изменилось в сравнении с ГОСТ 9250—59, оно полностью соответствует рекомендации СЭВ P 581—66. Исходный контур указывается ссылкой на соответствующий стандарт. Порядок указания нестан-дартизованного исходного контура для конических зубчатых колес полностью соответствует P 581—66 и правилам, установленным ГОСТ 2.403—68 и ГОСТ 2.404—68, нестандартизованный исходный контур задается углом профиля а , коэффициентом высоты головки — /о, коэффициентом радиального зазора q и радиусом закругления Г (черт. 211).  [c.137]

Вал VI станка 6М12П смонтирован на одном радиальном и двух радиально-упорных шарикоподшипниках. Радиальноупорные шарикоподшипники расположены во фланце и стянуты шайбой, которая крепит фланец к поперечной стенке станины. Зазор в радиально-упорных подшипниках регулируется подшли-фовкой промежуточных колец. Сцепление конического зубчатого колеса регулируется путем осевого перемещения всего вала VI винтами, ввернутыми во фланец (рис. 274, б).  [c.347]

По ГОСТ 13755-81 (СТ СЭВ 308-76) и В754-81 (СТ СЭВ 516-77) параметры исходного контура угол профиля а = 20° глубина захода зубьев йщ = к%т = 2т, где к — коэффициент глубины захода зубьев шаг рейки р = пт коэффициент высоты головки зуба / 5 = 1 коэффициент радиального зазора для цилиндрических зубчатых колес с = 0Д5 (при обработке зубьев долбяком и шеверами до с = 0,35 и до с = 0,4 при шлифовании зубьев) и для конических зубчатых колес с = ОД радиус закругления зуба у основания цилиндрических зубчатых колес р = = 0,38т и конических зубчатых колес р, = 0,2т.  [c.166]

В редукторах с шевронными или сдвоенными косозубымн колесами (образующими шеврон) осевые усилия взаимно уравновешиваются так, подшипники тихоходного вала фиксируют относительно корпуса в осевом направлении, а быстроходный вал выполняют плавающим для самоустановки его вдоль оси по колесу тихоходного вала. Для этого часто используют роликоподшипники без бортов на одном из колец наружные кольца закрепляют в корпусе боковыми крышками и пружинными кольцами (рис. 7.18), На рис. 7.19—7.21 представлены опорные узлы валов с коническими зубчатыми колесами. В схемах на рис. 7.19 и 7.20 осевая нагрузка воспринимается правым подшипником, на который действует меньшая радиальная сила осевой зазор регулируют прокладками между фланцем стакана и боковой крышкой.  [c.111]

Контроль кинематической точности. Под кинематической точностью конических зубчатых колес понимают те же показатели (согласованность углов поворота), что и для цилиндрических передач, и в основном нормируют те же элементы. Различие заключается в том, что ГОСТ 1758—81 нормы задаются отдельно только для зубчатых колес, для зубчатой пары (колеса и шестерни без корпуса) и для зубчатой передачи (колеса и шестерни в собранной передаче). В качестве одной из радиальных составляющих дополнительно нормируется колебание бокового зазора в передаче. В качестве основного вида двухпра )ильной комплексной проверки в стандарте указано колебание измерительного межосевого угла.  [c.336]

Примеры конструкций выходных валов редукторов, выполненных по развернутой схеме, показаны на рис. 12.22. Сами валы проектируют с возможно меньшим числом ступеней, обеспечивая осевую фиксацию зубчатых колес на валу посадками с натягом (рис. 12.22, а—в). Определенным недостатком указанных конструкций является необходимость применения при установке колес специальных приспособлений, обеспечивающих то шое осевое положение колес на валу. Поэтому наряду с ними применяют конструкцию вала по рис. 12.22, г, в которой колесо при сборке доводят до упора в з шлечик вала. Во всех вариантах конструкций рис. 12.22 подшипники установлены враспор . Необходимый осевой зазор обеспечивают установкой набора тонких металлических прокладок ] под фланец привертной крышки (рис. 12.22, а, в), а в конструкциях с закладной крышкой — установкой компенсаторного кольца 2 при применении радиального шарикоподшипника (рис. 12.22, б) или н гжимного винта 3 при применении конических роликоподшипников (рис. 12.22, г).  [c.207]


Если заменить термины начальные цилиндры (окружности)" или делительные цилиндры (окружности)" термином начальные конусы (окружности)" и под торцевым сечением понимать сечение поверхностью дополнительного конуса, то для конических колёс будут пригодны те же определения, что и для цилиндрических (табл. 3 на стр. 217—221), для следующих терминов выкружка, головка зуба диаметральный питч р з-убчатая передача зубчатые колёса (зубчатки), интерференция колесо контактная линия корень зуба косые зубья левого хода косые зубья правого хода коэфпциент высоты зуба в нормальном (или в торцевом) сечении / (/ ) коэфициент перекрытия в торцевом сечении коэфициент радиального зазора в нормальном (или в торцевом) сечении  [c.326]

В опорах малонагруженных передач для установки в распор применяются радиальные и радиально-упорные однорядные шарикоподшипники, а при более значительных нагрузках — конические однорядные роликоподшипники. Подшипники с цилиндрическими роликами без бортов на одном из колец (типа 2000 и 32000) устанавливаются в плавающей опоре либо в обеих опорах с восприятием осевого усилия подшипником, освобожденным от радиальной нагрузки при помощи зазора, образованного между наружным кольцом и расточкой корпуса. В опорах прямозубых цилиндрических зубчатых колес — сателлитов планетарной передачи часто применяют устанавливаемые в распор подшипники с цилиндрическими роликами с одним бортом на внутреннем кольце (тип 42000), способные воспринимать небольшую осевую нагрузку. Центрирование сепаратора в подшипниках этого типа осуществляется по двухбортовому наружному кольцу, что наиболее предпочтительно для подшипников, работающих в данном  [c.520]

Параметры исходнбхх контуров, применяемых в приборостроении передач, представлены в табл. 6.15. Последующие рекомендации и пример расчета относятся к ортогональным коническим передачам с прямозубыми колесами, имеющими осевую пропорционально понижающуюся форму зуба I, постоянный радиальный зазор по ширине зубчатого венца при коэффициенте смещения, равном нулю.  [c.310]

Радиальное биение Ei ступени вала, на которую насажено колесо или червяк, по отношению к ступеням вала, на которые насажены шарикоподшипники, вызывают биение зубчатого венца аналогично зазору в посадке, поэтому для цилиндрических и червячных колес радиальное биение зубчатого венца Е равно радиальному биению ступени вала Е . Для червяка радиальное биение витков червяка такн4е равно биению ступени вала. Биение зубчатого венца Е конического колеса равно  [c.96]

Износ зубьев колес коническойТпередачи непосредственным измерением установить трудно, так как зубья имеют переменную толщину и неравномерно изнашиваются как по высоте, так и по длине. Поэто-у в ремонтной практике толщину зубьев не измеряют. а о предельном их износе судят по характеру работы передачи. Работа конической зубчатой передачи считается нормальной, когда колеса вращаются с допустимым для данного типа передачи шумом и без рывков, при нормальном боковом зазоре Сб, радиальный зазор Ср между зубьями составляет не менее 0,10 мм, а относительное смещение колес по затылкам не превышает 2 мм. Номинальные и допускаемые размеры зазоров между зубьями и толщин зубьев приводятся в нормативно-технической документации.  [c.176]

Радиально-упорные подщипники нужно регулировать более точно. Подщипники цилиндрических, конических и червячных зубчатых колес рекомендуется регулировать на нуль, т. е. без начальной осевой игры. Возможность заклинивания подшнпннков исключается, так как большого перепада температур нагрева валов и корпуса ожидать нельзя, а корпус обладает определенной податливостью. Отсутствие зазоров весьма благоприятно для ресурса передач, так как перекосы в зацеплении при этом уменьшаются. Особенно важно отсутствие осевой игры для конических и червячных передач, зубчатые колеса которых нуждаются в точном осевом положении.  [c.440]

Для правильной сборки червячной передачи профиль и шаг нарезки червячного колеса и червяка должны соответствовать друг другу червяк должен соприкасаться с каждым зубом червячного колеса на участке не менее 2/3 длины дуги зуба червячного колеса радиальное и торцовое биение червяка и червячного колеса не должно выходить за пределы норм, установленных для соответствующих степеней точности межцентровые делительные расстояния должны соответствовать расчетной величине, обеспечивая необходимый зазор, установленный для соответствующего класса передач оси скрещиваюи],ихся валов должны располагаться под углом 90° друг к другу величина мертвого хода червяка должна соответствовать установленным нормам для соответствующего класса передач собранные передачи испытывают на холостом ходу и под нагрузкой во время испытаний проверяют плавность хода и нагрев подшипниковых опор, который должен быть не выше 50—60 °С. Как при сборке цилиндрических и конических зубчатых передач, так и при сборке червячных передач важным является контроль геометрических параметров по заданным нормам точности. Приемы сборки червячных передач аналогичны приемам сборки цилиндрических и конических зубчатых передач. Червячное колесо на валу устанавливают на врезную призматическую шпонку или закрепляют с двух сторон гайками положение средней плоскости колеса регулируют гайками или компенсаторными кольцами различной толщины. При закреплении колес на валах возможны случаи неточности сборки перекос и сдвиг по оси. Перекос посадки червячного колеса проверяют в центрах с помощью индикатора. Аналогично проверяют биение витка червяка по нормам плавности работы. После контроля точности деталей червячной передачи собирают отдельные единицы и саму передачу. При этом осуществляют комплексный контроль по различным нормам точности.  [c.532]

Зажнм радиального суппорта производится двумя плунжерными винтами. Привод радиального суппорта осуществляется от зубчатого цилиндрического колеса 2=23 (см. рис. 89) через конические колеса 71 и винтовую реечную передачу /С=1, р=16 мм, состоящую из двух винтов 18 и рейки 19. Зазор в винтовой передаче регулируется посредством сжатия двух половин винта 18, сидящих на шлицевом валике с некоторым зазором по торцам винтов.  [c.144]


Смотреть страницы где упоминается термин Конические зубчатые колеса радиального зазора : [c.492]    [c.338]    [c.218]    [c.12]    [c.472]    [c.288]    [c.5]    [c.366]    [c.139]    [c.411]    [c.530]   
Приводы машин (1962) -- [ c.152 ]



ПОИСК



Зазор

Зазор радиальный

Зазоры в зубчатых конических

Зазоры в зубчатых радиальные

Колеса зубчатые конические

Колеса конические



© 2025 Mash-xxl.info Реклама на сайте