Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан травление

Химическая обработка металлов в растворах щелочи (оксидирование стали, химическая полировка алюминия, рыхление окалины на титане, травление алюминия, магния и их сплавов и др.) при температуре раствора выше 100 ° С ниже 100°С  [c.132]

Химическое никелирование титана. Химическое никелирование титана используют для улучшения внешнего вида и условий пайки, но нанесение покрытий на титан затруднено окисной пленкой толщиной порядка 5-10 мкм Для удаления окисной пленки поверхность титана подвергают гидропескоструйной обработке, травлению или применяют оба этих метода  [c.31]


Титан 0,1 С 0,044 Fe 0,55 Si 0,08 N2 Ti/про-катка + травление 9,8 400 400 - 0,00139 0,00074 360 5040  [c.208]

Кроме реактивов для макротравления алюминиевых сплавов, специально для ряда сплавов рекомендуют ранее указанные способы травления. Для сплавов алюминий—медь—реактивы 3, 5 и 32 алюминий—титан 6 алюминий—цинк 2 алюминий—медь— магний 7 и 12 алюминий—медь—кремний 5.  [c.264]

Термическое травление позволяет обнаружить дислокации в железе [1] и в титане [21].  [c.302]

Композиции титан — бериллиевая проволока пробовали получать при температурах от 590 до 870° С, давлениях от 420 до 5600 кгс/см и времени выдержки от 0,5 до 10 ч. Основной трудностью изготовления этих композиций являлось то, что при технологических температурах бериллий более пластичен, чем титан, и в процессе изготовления материала из чередующихся слоев бериллиевой проволоки и титановой фольги бериллиевая проволока деформируется. Кроме того, имеет место химическое взаимодействие титановой матрицы с бериллиевым упрочнителем. Оба эти фактора приводят к снижению прочности бериллиевой проволоки, поэтому были предприняты попытки обеспечить равномерное всестороннее давление на каждую проволоку в результате укладки проволоки в канавки, полученные в титановой фольге методом травления. Однако получить канавки с идеальной геометрией не удалось, и деформация проволоки наблюдалась и в этом случае. Уменьшение величины взаимодействия достигалось в результате снижения температуры прессования и уменьшения времени выдержки. Композиционный материал с наиболее высокими свойствами был получен в результате совместной на-  [c.142]

Особенно чувствительны к водородной хрупкости металлические покрытия, поскольку она ухудшает их механические характеристики и приводит к растрескиванию вследствие уменьшения эластичности. К водородной хрупкости чувствительны многие металлы железо и стали, никель, свинец, цинк и титан. При горячем травлении серной кислотой диффузия усиливается, а в случае соляной кислоты ослабевает.  [c.59]

Наиболее распространенными являются такие растворы, в состав которых входят азотная и плавиковая кислоты. Это объясняется тем, что наличие азотной кислоты предотвращает поглощение титаном водорода, что в противном случае приводило бы к увеличению хрупкости изделий. Эффективность процесса травления зависит от прочности и целостности окисной пленки, поэтому последнему должна предшествовать солевая, а лучше механическая очистка. Продолжительность травления не рекомендуется увеличивать, так как это приводит к непроизводительным потерям титана. В США на предприятиях, производящих и обрабатывающих титан, моечные установки обычно встраивают в поточные линии и они являются необходимой частью производства титановых изделий.  [c.147]


Для травления аустенитных сталей, легированных титаном,. можно использовать следующий раствор  [c.932]

Химическая, гальваническая и химикотермическая обработка. Наиболее часто применяемая поверхностная операция обработки большинства листов, труб и других профилей — это кислотное травление. В результате такой обработки по отдельным данным циклическая прочность снижается от 20 до 40%. Наибольшее влияние травления на усталость наблюдается на высокопрочных сплавах, наименьшее — на технически чистом титане. Заметное снижение усталостной прочности титановых сплавов происходит и при других видах химической, электрохимической и гальванической обработки. В частности, электрохимическая обработка (ЭХО) снижает сопротивление усталости (до 40%), подобно кислотному травлению, причем восстановление предела усталости, как и в случае шлифовки, часто достигается только после наклепа или после удаления поверхностного слоя около 0,1 мм. При специальной разработке режимов ЭХО в сочетании с другими видами поверхностной обработки можно достичь высоких значений усталостной прочности [85]. Даже электролитическое полирование несколько снижает усталостную прочность.  [c.175]

Титан. 14. Травление сплавов ОТЧ,  [c.175]

Нагретый реактив с меньшим количеством воды используют для окрашивающего травления хромоникелевых сталей с молибденом, вольфрамом, бором и титаном [14]. В нагретом до 65—75° С растворе (время травления 4—10 сек) выявляются интерметаллиды, феррит и сг-фаза, карбиды не травятся.  [c.35]

При травлении в течение 30 сек в быстрорежущих сталях карбиды вольфрама темнеют, цементит не травится. Травление в нагретом до 80—90° С реактиве в течение 5 мин позволяет выявить феррит, ст-фазу, карбиды и интерметаллиды в сложных хромоникелевых сталях с молибденом, бором, титаном [14].  [c.61]

I. Исследование возможностей травления окалины на титане в водных растворах кислот.  [c.133]

Травитель 81 [термическое травление]. Путем термического травления, по данным Ханке [61 ], можно микроскопически выявлять кобальтовую фазу. Заготовки, не содержащие титан, нагревают в муфельной печи в течение 10 мин при 400° С. Для визуального выявления общей структуры нагретый образец следует электролитически травить примерно 4 с в 5%-ном растворе КОН.  [c.128]

Заготовки, содержащие титан, нагревают 15—20 мин в муфельной печи при 400° С и после охлаждения подвергают электролитическому травлению в 5%-ном растворе NaOH или КОН. При этом различные фазы приобретают следующую окраску  [c.128]

Шрадер [37 ] советует применять раствор 6, указанный Рери-гом [9], для выявления в сплавах алюминия с титаном измельчения его зерен в результате легирования титаном. Условия травления этих сплавов аналогичны условиям травления алюминия. Ямки травления, одинаково расположенные внутри каждого зерна, придают зернам различный блеск.  [c.264]

О металлографии бериллия сообщают Кауфман, Гордон и Лилли [1]. Они описывают способы изготовления шлифов из чистого бериллия и бериллиевых сплавов. Микроструктуру бериллия в литом, холоднодеформированном, а также в отожженном состоянии они наблюдали с помощью поляризованного света (+N), так как способы травления бериллия неизвестны. Структуру сплавов бериллия с углеродом, железом, азотом, титаном, кремнием, алюминием и цирконием авторы выявляют реактивом, состоящим из 2 г HF и 98 мл НаО. Гауснер [28] и Калабра и др. [29] приводят обзор металлографии бериллия, в котором обсуждаются различные способы выявления структуры.  [c.292]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]


Другая трактовка влияния Т1зА1 была предложена теми, кто отдает предпочтение взаимодействию водород — металл в качестве причины, вызывающей КР, т. е. присутствие Т зА1 приводит в результате к более быстрой абсорбции водорода. В работе [227] показано, что абсорбция водорода в процессе травления в растворах, содержащих фториды, происходит много быстрее в сплавах, содержащих в своей структуре Т1зА1. Однако в работе [81] получено, что адсорбция водорода при повышенных температурах в сплаве Т1 — 20% (ат.) А1, или 12,5% (по массе) А1, происходит медленнее, чем в технически чистом титане или сплавах Т1 — 8А1. В действительности, абсорбция водорода происходит наиболее быстро в титане, что является противоположным поведению при КР-  [c.409]

При кислотном травлении удаление окислов происходит путем нроникновення раствора под окисную пленку и растворения металла. Ввиду указанного получаются большие потери металла и наблюдается неравномерность травления. Кроме того, выделяющийся в процессе травления водород диффундирует в титан, снижая его пластичность.  [c.98]

Металлом плавок были отлиты колесные центры электропоезда. Проверкой установлено, что ни один центр не был забраковал по горячим трешлнам. Для сравнения структуры были вырезаны темплеты из отливок с титаном и без добавок титана. На рис. 6 и 7 представлены макроструктуры отливок по обоим вариантам. Как видно из ])ис. 6, макроструктура стали без титана отличается грубодендритным строением, с очень широкой зоной транскрнсталлизации. Структура отливки из титансодержащей стали (0,05% Ti), представленная на рис. 7, хотя и имеет дендритное строение, но развитие дендритов значительно слабее, чем в первом случае. Зона транскристаллизации очень узкая и состоит из очень плотных кристаллитов, которые почти не выявлены глубоким травлением.  [c.190]

Термореактивные материалы В 29 (способы и устройства для экструдирования С 47/(00-96) термореактивные смолы как формовочный материал К 101 10> Термостаты, использование для регулирования охлаждения двигателей F 01 Р 7/12 7/16 Термоформование изделий из пластических материалов В 29 С 51/(00-46) Термочувствительные [краски или лаки С 09 D 5/26 элементы (биметаллические G 12 В 1/02 тепловых реле Н 01 Н 61/(02-04))] Термоэлектрические [пирометры G 01 J 5/12 приборы (использование в термометрах G 01 К 7/00 работающие на основе эффекта Пельтье или Зеебека Н 01 L 35/(28-32))] Тигельные печи тепловой обработки 21/04 печей 14/(10-12)) лабораторные В 01 L 3/04 плавильные для литейного производства В 22 D 17/28] Тиски В 25 В (1/00-1/24 ручные 3/00) Тиснение бумаги В 31 F 1/07 картонажных изделий В 31 В 1/88 металлическое В 41 М 1/22 поверхности пластических материалов В 29 С 59/00 способы В 44 С 1/24) Титан [С 22 С (сплавы на его основе 14/00 стали, легированные титаном 38/(14-60)) С 25 (травление или полирование электролитическими способами F 3/08, 3/26 электроды на основе титана для электрофореза В 11/10)] Токарная обработка [древесины В 27 О <15/(00-02) инст рументы 15/(00-02)) камня В 28 D 1/16 пластмасс и подоб ных материалов В 29 С 37/00] Токарные станки [В 23 <В (3 25)/00 затыловочные В 5/42 конструктивные элементы и вспО могательные устройства В 17/00-33/60 линии токарных станков В 3/36 для нарезания резьбы G 1/00 общего назначения В 3/00-3/34 отрезные В 5/14 резцы для них (В 27/(00-24) изготовление Р 15/30) для скашивания кромок, снятие фаски или грата с концов прутков и труб В 5/16 фрезерные съемные устройства к ним С 7/02)]  [c.189]

На поверхности титана всегда имеется альфпрова1шый слой, нa ьrщ нFlыи атмосферными газами. Перед пайкой этот слой иеоб.ходимо удалить пескоструйной обработкой или травлением в растворе следующего состава 20— 30 мл H.jNO.,, 30—40 мл НС1 на литр воды. Время травления 5—10 мин при 20 X, После такой обработки на поверхности титана все же остается тонкая окисная пленка, препятствующая смачиванию его поверхности припоем. Поэтому иногда пытаются паять титан с применением специальных флюсов, по составу аналогичных флюса.м для пайки алюминия. Но соединения титана, паянные с применением таких флюсов, не отличаются высоким качеством. Обычно пайку титана и его сплавов ведут в вакууме или в аргоне марки А, который тщательно очищен от примесей кислорода, азота и паров воды. Только в такой чистой атмосфере или Б вакууме окисная и нитридная пленки на титане растворяются в металле при условии, что температура пайки выше 700 °С, Поэтому процесс пайки титана ведут обычно при температуре 800—900 °С, что способствует быстрой очистке поверхности титана и хорошему смачиваишо его припоями. Пайку титановых сплавов при более высоких температурах производят довольно редко (особенно печную), так как при его длительном нагреве при температурах выше 900 °С отмечаются склонность к росту зерна и некоторое снижение пластических свойств. Поскольку предел прочности основного металла при этом практически не снижается, то в отдельных случаях соединение титановых сплавов пайкой производят даже при 1000 °С.  [c.255]

Важное значение имеет явление естественного старения на-водороженного титана. В закаленном (400° С) титане ударная вязкость при различном содержании водорода находится на более высоком уровне, чем после медленного охлаждения. Однако длительная выдержка при комнатной температуре приводит к закономерному снижению ударной вязкости закаленного титана до уровня медленно охлажденного. Отсюда следует, что при изготовлении полуфабрикатов малой толщины (тонкие листы, трубы и т. п.), охлаждающихся после горячей прокатки, термообработки или травления в горячем-щелочном расплаве с большой скоростью, наводороживание может быть не обнаружено при оценке качества  [c.118]

Наиболее легко ликвационный квадрат выявляется в сталях 1—4X13, в хромоникелевых сталях с титаном и ниобием для выявления ликвационного квадрата нужно длительное травление.  [c.269]


В работе Кологриво-вой и Мирского полигональная структура в 13-титане (ВТ-15) выявлена методами травления п просвечивающей электронной микроскопией. В этом сплаве р-фаза не является стабильной, она может распадаться с образованием а-фазы при медленном охлаждении, при отпуске закаленного сплава, а также при пластической деформации. Частицы а-фазы декори-  [c.192]

На рис. 74, а показана нолигонизованная структура в техническом титане (ВТ1-1) после охлаждения с 1100° С. До 820° С образцы охлаждались со скоростью / 10 град мин, а затем быстрее 100 град мин. Нагрев и охлаждение производились в вакууме 5,33—6,67-10-2 м/лг . (4—5-10 тор). Субграницы выявляются после многократной (3—5 раз) полировки видны система субграниц и большое число ямок травления внутри а-пла-стин. Сравнение с образцом, подвергавшимся деформации до а 3 -превращения, не обнаруживает видимых различий. Электронномикроскопическое исследование на угольных репликах позволило четко обнаружить, что субграницы представляют собой цепочку ямок травления рис. 74, б). При исследовании тонких фольг на просвет обнаруживается, что субграницы состоят из дислокаций, декорированных частицами примесей (рис. 74, в). Это подтверждается тем, что в монокристалле титана, очищенном зонной плавкой, субзеренная структура выявляется во много раз слабее, чем в техническом титане.  [c.195]

Ранее было показано, что водород в никеле распределен сравнительно равномерио (в масштабе зерна), а в титане — очень неравномерно. Характер влияния водорода на свойства этих металлов также различен (эффект Портевена — Ле-Ша-телье в никеле — водородная хрупкость титана). Это влияние в общем аналогично влиянию углерода. Химическое сродство никеля к водороду и углероду мало, титана — велико (образует стабильные гидриды и карбиды). Таким образом, есть много общего в поведении обеих примесей внедрения в каждом из этих металлов, поэтому представляет интерес выяснить, идентично лк распределение водорода и углерода в никеле и титане. Для исследования распределения углерода в никеле его диффузионно насыщали изотопом Выбранный режим полировки (электролит, ток) обеспечивал отсутствие рельефа на поверхности образцов, насыщенных углеродом в этом же электролите, изменяя ток, выявляли ямки травления., Просмотр авторадиограмм — реплик показал, что распределение углерода в объеме зерен равномерно (рис. 220), окрестности растравленных участков обогащены углеродом. Такой характер локализации , по-ви-димому, свидетельствует о сегрегации углерода на дислокациях.  [c.482]

Метод высокопроизводителен и эффективен в условиях массового п крупносерийною производства. Метод непригоден для деталей сложной конфигурации, имеющих острые кромки, щелевые зазоры и замкнутые полости, из которых трудно удалить остапш травильных растворов, а также деталей, имеющих отдельные участки поверхности из неметаллических материалов или с защитными покрытиями. Поверхность детали перед травлепием следует очистить от смазок и жировых загрязнений. Поверхность протравленных деталей должна иметь цвет обрабатываемого металла, быть блестящей или матовой. На поверхностях паяемых деталей после травления не должно быть остатков окалины, а также общих, местных или точечных, видимых невооруженным глазом растравленных мест, шлама, трещии, следов неотмытых солей, растворов и влаги, следов от захвата руками. Допускаются неоднотониость, неравномерная матовость, следы от потоков воды, риски, забоины, царапины н другие механические повреждения, которые были до травления на детали. На меди, титане и их сплавах возможно выявление зернистости структуры основного металла.  [c.100]

Титан + углеродистая сталь Первоначально травление стали, затем титана. Травление стали электролитическое в 10%-ном водном растворе хромовой кислоты Н2СГО4 U= 15-20 В / = 0,25-0,35 А/см = 5-40 с. Травление титана в плавиковой кислоте HF = 3-5 с  [c.218]

Титан часто подвергается травлению как для снятия альфиро-ванного слоя, так и для глубокого травления (химическое фрезерование). Ввиду того что титановые сплавы склонны к наводо-роживанию, при их тра,влении стараются применять азотную и фтористоводородную кислоты, ненаводороживающие титан (основным катодным процессом в азотной кислоте является не реакция разряда ионов водорода, а реакция восстановления азотной кислоты). Однако в некоторых случаях для непродолжительного травления, а также в ряде химических производств титан н его сплавы находятся в контакте с серной и соляной кислотами. Поэтому изыскание ингибиторов коррозии для титана представляет определенный интерес.  [c.216]

Как уже отмечалось, при травлении титановых сплавов, в особенности высокопрочных, может происходить наводорожввание, часто приводящее к растрескиванию сплавов. Чтобы избежать этого, можно пойти двумя путями изыскивать ингибиторы наводоро-живания или подбирать такие электролиты, которые бы не наво-дороживали титановые сплавы. Травление титановых сплавов можно производить в серной, соляной, фтористоводородной, азотной кислотах, а также в смесях их. Первые три кислоты наводо-роживают титан.  [c.230]

Технологич. особенности Т. с. определяются физико-химич. св-вами самого титана. Выплавка Т. с. должна производиться в вакууме или в среде аргона (иоследпее применяется нри наличии в силаве летучих компонентов, напр. Сг), в медных водоохлаждаемых тиглях (к-рые обычно служат и изложницами) либо в графитовых тиглях с титановым гарниссажем для уменьшения науглероживания. Источником тенла является дуга постоянного тока, возбуждаемая между дном тигля и расходуемым электродом, изготовленным путем холодного прессования губчатого титана с добавлением легирующих элементов. Для фасонного литья Т. с. лучше всего применять металлич. или графитовые формы. При травлении листов из Т. с. в кислотных тра-вителях для снятия окалины наблюдается наводороживание металла, к-рое тем интенсивнее, чем больше содержится в сплаве Р-фазы, чем продолжительнее травление и выше темп-ра раствора. Для предохранения от наводороживания листов применяют плакирование нелегированным титаном, а для удаления водорода из металла — вакуумный отжиг. При технологич. нагревах полуфабрикатов следует избегать чрезмерно высоких темп-р и длительных выдержек во избежание глубокого окисления е обра-  [c.327]

Листы, лепта, полосы из сплавов ВТ15 и ВТ16 подвергаются плакированию тех-нич. титаном ВТ1-0 или ВТ1-1 для защиты от избирательного окисления в процессе нагрева при горячей обработке давлением и термообработке, а также от наводороживания при травлении листов в кислотной ванне. Плакирующий слой из мягкого титана способствует повышению пластичности и улучшает качество поверхности листов. Детали из плакированного материала надежно работают в конструкциях. Плакирование осуществляется путем герметичной приварки аргонодуговым методом титанового планшета к слябу (по периметру) и последующей прокатки по  [c.336]

Основной трудностью при нанесении никельфосфорных покрытий на титан является получение гидридной пленки на поверхности металла. Формирование этой пленки, в соответствие с теорией коррозии, происходит на активном участке поляризационной кривой, вследствие чего, че.м больше скорость коррозии, тем легче формируется пленка. Б табл. 2. приведены составы травильных растворов, их работоспособность и скорость травления сплава ВТ-14 при 90°С.  [c.104]

Титан, циркоггай и гафний обладают весьма высокой коррозионной стойкостью. Хорошую стойкость имеют и некоторые сплавы этих металлов. Наличие посторонних включений сильно снижает их коррозионную стойкость. Рекомендуемая обработка их поверхности заключается в травлении в водном растворе азотной и плавиковой кислот.  [c.60]


Для высокотемпературной пайки сплавов инконель системы Ni—Сг—Fe наиболее пригодны никелевые припои. Содержание в сплавах типа инконель элементов, образующих весьма стойкие окисные плеики. Таких как алюминий и титан от 0,5% и выше (в сумме), заметно ухудшает смачивающую способность их припоями. В этом случае поверхность паяемого металла должна быть подготовлена перед пайкой шлифованием и травлением, при которых хорошо удаляется слой окисной пленки и обеспечивается шероховатость поверхности, улучшающая растекаемость припоя. Нанесение никелевого покрытия на такие сплавы также улучшает смачивание их жидкими никелевыми припоями.  [c.305]

Реактив выявляет также границы зерен и двойники в кремнии и титане, позволяет разделить а- и 3-фазы в хромотитановых и хроможелезотитановых сплавах. Травление производят погружением на несколько минут, после чего про.мывают теплой водой.  [c.20]

Убедительные результаты, подтверждающие изложенную точку зрения, были получены в работе [175], в которой с помощью электронного микроскопа исследовались до и после травления в кипящей 65%-ной HNO3 тонкие срезы из зоны, непосредственно прилегаклщей к оплавленному металлу шва сталей, стабилизированных титаном и ниобием. Показано, что расположенные по границам зерен частицы карбида титана сильно корродируют, в то время как частицы карбида ниобия остаются практически без изменений.  [c.68]

Исследовалось травление окалины на образцах, окисленных при нагреве на воздухе в течение одного часа при температурах 800, 900 и 1050° С. Выбор температур окисления был обусловлен как практическими, так и научными соображениями. В производстве титанового проката приходится травить металл после нагрева при указанных температурах. Помимо этого рядом авторов [5], [6] при изучении закономерностей окалинообразования на титане в интервале температур 850—1000 ° С были замечены изменения в ходе окисления, сопровождавшиеся разрььхлением окисной пленки. Интересно было проверить, как сказываются указанные изменения на поведении окисленного металла при травлении.  [c.134]


Смотреть страницы где упоминается термин Титан травление : [c.47]    [c.118]    [c.187]    [c.213]    [c.286]    [c.25]    [c.698]    [c.422]    [c.48]    [c.53]   
Гальванотехника справочник (1987) -- [ c.131 , c.550 ]



ПОИСК



Титан

Титанит

Титания

Травление

Травленне



© 2025 Mash-xxl.info Реклама на сайте