Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устройства горелочные

Камеры сгорания газотурбинных установок, как правило, изготавливаются сварными из листовых и литых деталей. Они подвержены воздействию высоких температур, достигающих 900—1100°. Для охлаждения наружных оболочек они обычно выполняются двухстенными с пропуском между стенками охлаждающего воздуха. Топливо смешивается с воздухом с помощью установленных в камере горелочных устройств. Горелочные устройства, а также различные детали, служащие для распределения воздуха и топлива в камере, как правило, делаются сварными.  [c.17]


ТУ 51-02-225-86 Устройство горелочное на жидком топливе ТУ 51-02-227-86 Аппараты газовые универсальные  [c.51]

При нормальной организации топочного процесса ав>1. причем чем совершеннее топка и лучше горелочные устройства, тем меньше приходится подавать лишнего воздуха. В лучших топочных устройствах 8=1,05 1,1, в плохих — до 1,3—1,5.  [c.127]

Если отходящий из технологических установок газ не содержит горючих компонентов, то такой котел горелочных устройств не имеет. Эти котлы работают с естественной или принудительной циркуляцией и имеют практически все детали описанных выше котельных агрегатов.  [c.157]

Составляющие тепловых потерь указаны в формуле (18.5). Из них потери теплоты от химической неполноты сгорания <Эз и от механического недожога Q< для современных котельных агрегатов невелики, что связано с высоким совершенством горелочных устройств (см. гл. 17). Несколько больше потери в окружающую среду через ограждение (стены) котла, но и они обычно не превышают 2,5 %, поскольку плотные относительно холодные экраны топки и изоляционный слой обмуровки как топки, так и газоходов достаточно надежно защищает котел от теплопотерь в окружающую среду. Наибольшие теплопотери (5 % и более) составляют потери с уходящими газами, поскольку они удаляются из котла с температурой ПО—150°С (см. 18.1), что намного превышает температуру окружающей среды.  [c.216]

Вихревые горелочные устройства  [c.307]

Холодные продувки вихревых горелочных устройств позволили установить соотношение геометрических и режимных параметров, обеспечивающих при заданных условиях на входе достиже-  [c.318]

Вихревые горелочные устройства с запуском на основе самовоспламенения могут быть использованы для организации аэродинамической стабилизации фронта пламени на стержневых вдуваемых радиально интенсивно закрученных струях — огневых жгутах факела продуктов сгорания [162, 177, 191]. Одно из свойств вихревых горелок — устойчивость вихревого огневого жгута — факела продуктов сгорания (рис. 7.21, 7.22) может быть с успехом использовано в энергетике для пуска топочных устройств различных агрегатов, в том числе и для запуска камер сгорания ГТУ. В экспериментах длина огневого жгута составляла 1,5—2 м при габаритах воспламенителя 070, длине 150 мм, давлении сжатого воздуха 0,6 МПа, температуре на входе 293 К, расходе сжатого воздуха 15 г/с и коэффициенте избытка воздуха а = 2.  [c.332]

Предварительный подогрев жидкого топлива, интенсифицирующий испарение, позволяет получить в вихревой камере гомогенный состав, существенно облегчающий запуск и высокую устойчивость работы при сравнительно высокой полноте сгорания топлива Т1 = 0,99(9). Техническая характеристика горелочного устройства окислитель — сжатый воздух (давление — 0,1-0,6 МПа, расход 10,0 < С < 20 г/с), топливо (природный газ, керосин, дизельное топливо, отработка), расход G= 2- -3 г/с. Система подачи топлива — вытеснительная по магистрали, соединяющей горелку с вытеснительным бачком. Запуск горелки осуществляется открытым факелом через специальные продувочные окна.  [c.351]


В отражательных печах перерабатывается 80% всего медьсодержащего сырья [179]. Пути повышения производительности этих печей имеют огромное народнохозяйственное значение. Из целого ряда мероприятий по увеличению экономичности работы отражательной печи применение рассматриваемых нами покрытий позволяет улучшить конструктивные элементы кладки, установить более мощные дутьевые средства и широко внедрить турбулентные горелочные устройства.  [c.212]

Часть горячего воздуха после воздухоподогревателя 6 может быть использована для сушки топлива, а остальная часть — вторичный воздух II — поступает непосредственно в горелочные устройства топки 2. Воздух на сушку вместе с топливом подается в мельницу 1, где осуществляется также размол топлива. Выходящий из мельницы воздух включающий присосы в системе пыле-приготовления, называют первичным 1. Смесь первичного и вторичного воздуха представляет собой организованно подаваемый в топку (через горелки) воздух. Обозначив избытки соответственно первичного ai и вторичного ац воздуха, получим  [c.33]

Основную часть эксплуатационных затрат составляет стоимость электроэнергии, которая определяется условиями работы блока, сопротивлением его газовоздушного тракта. На сопротивление газовоздушного тракта, кроме вида сжигаемого топлива, сильное влияние оказывают избытки и присосы воздуха, отложения на поверхностях нагрева, равномерность полей скорости и правильность выбора скоростей в поверхностях нагрева, совершенство горелочных устройств и элементов газовоздушного тракта.  [c.138]

Если отходящий из технологических установок газ не содержит горючих компонентов, то такой коте горелочных устройств не имеет. Эти  [c.180]

Наиболее распространена однокамерная топка для сжигания твердого топлива (рис. 3-24). Топка состоит из следующих основных частей собственно камеры I в виде параллелепипеда, на стенах которой устанавливают горелочные устройства — амбразуры 8 или горелки, форсунки 10 и сопла 2 для подачи воздуха 9. С внутренней стороны стены топки защищены экранами из труб 3. Экраны воспринимают теплоту в основном излучением, как это видно из формул (2-101) и (2-113), т. е. пропорционально разности четвертых степеней температур газов в топке и температур стенок труб. Поэтому экраны, кроме защиты стен от высоких температур и шлакования, используются для восприятия значительных количеств теплоты при небольших размерах поверхностей нагрева (см, стр. 75, 76 и рис. 2-8).  [c.142]

Подготовленная к сжиганию пыль топлива поступает в топочные камеры через специальные горелочные устройства.  [c.146]

Относительно небольшие молотковые мельницы, устанавливаемые к котельным агрегатам паропроизводительностью от 35 до 230—325 г/ч, предназначенным для сжигания бурых углей и торфа, обычно работают в сочетании с довольно примитивным сепаратором гравитационного типа (рис. 22-4), который выполняют в виде прямоугольной вертикальной шахты 2 из листовой стали, высотой 4—8 м и более в зависимости от производительности мельницы. Сепарация пыли в шахте осуществляется Иод действием силы тяжести. Более тонкие и легкие частицы топлива выносятся из мельницы / в шахту 2 и из нее непосредственно в топку через амбразуру 5 или особое горелочное устройство. Боле тяжелые, недостаточно размолотые частицы топлива выпадают из шахты в мельницу для дальнейшего размола. Вторичный воздух, необходимый для горения, подается в топку из воздухопроводов 3 через шлицы 4.  [c.267]

В более крупных котельных агрегатах, а также в котельных агрегатах, предназначенных для сжигания каменных углей, вместо открытой амбразуры применяют специальные горелочные устройства, позволяющие рационально организовать ввод в топку пыле-воздушной смеси и вторичного воздуха.  [c.276]

РИС. 48. Горелочные устройства топок с молотковыми мельницами  [c.121]

ГОРЕЛОЧНЫЕ УСТРОЙСТВА КОТЛОВ ЗиО  [c.1]

Естественно, что постановка целенаправленных опытов является основным методом изучения таких течений, довольно успешно помогающим конструкторам и исследователям в п >иклад-ных задачах использования закрутки потока, однако, поиски новых областей приложения и возрастающая стоимость опытов требуют разумного сочетания опытных и аналитических методик, что на данном этапе стимулирует работы в области совершенствования физико-математичес сих моделей, описывающих процесс. Тем более, что в настоящее время разработана целая гамма вихревых горелочных устройств на базе вихревого энергоразделителя, совершенствование которых возможно лишь при разумном сочетании опытных и теоретических данных в закрученных потоках в совокупности с постановкой численных математических экспериментов и развитием программ их реализации. Важность рассматриваемых проблем, большой накопленный объем информации и оригинальных разработок побудили авторов к опубликованию настоящей книги.  [c.4]


В последние годы закрутку потока стали широко использовать для интенсификации процесса горения. При создании эффективных фронтовых устройств камер сгорания в воздушно-реактивных двигателях, для стабилизации фронта пламени в различных камерах сгорания, при создании эффективных горелочных устройств, плазмотронов с вихревой стабилизацией все большее применение находят потоки с различной интенсивностью закрутки. Это обусловливает актуальность работ, направленных на понимание и описание термогазодинамики закрученных течений как при окислительно-восстановительных экзотермических химических реакциях, так и в их отсутствие. Необходимо вооружить практику методиками экономного расчета и проектирования технических устройств с закруткой потока, а сами устройства сделать более эффективными и экологически чистыми.  [c.7]

Качество горелочных устройств во многом определяется процессом смесеподготовки, т.е. смешением горючего и окислителя, конечная цель которого — создание гомогенной смеси компонентов топлива [34—40, 62, 63, 106, 141, 144, 245]. Для этого в камерах сгорания, горелочных устройствах широко используют криволинейные линии тока, закрутку потока и другие способы образования течения с интенсивной завихренностью [62, 106]. Примером может служить камера сгорания поршневого двигателя со стратифицированным зарядом (рис. 1.9). Закрутка поступающего воздуха и всасывающе-выталкивающее движение смеси, так называемое хлюпание, возникающее из-за выемки в днище поршня, позволяют решить две проблемы снизить эмиссию загрязняющих веществ и повысить КПД. Эти же моменты используются и для организации хорошей смесеподготовки в двигателях, работающих по циклу Дизеля. Закрутку потока используют  [c.29]

Вторая область 2, примыкающая к перфорированной камере, представляет собой мелкодисперсную двухфазную смесь керосина с воздухом — туман. На рис. 7.6 эта область выглядит как оптически плотный атермичный участок 2. Многочисленные фоторегистрации подтвердили хорошее качество распыла, достигаемое высокой турбулизацией потока и большой объемной плотностью кинетической энергии (е = lO -i-10 (кДж/м ), в то время как у большинства горелочных устройств других типов она не превышает 10 , к,/1ж/м .  [c.313]

В камере энергетического разделения вихревого горелочного устройства при работе на режиме без горения создаются зоны, температура в которых на 40—60% превышает исходную. Этот факт может быгь использован для организации теплового возгорания без привлечений внешнего источника энергии — свечи зажигания. В вихревых нагревателях тепловое возгорание должно наступать при температуре на входе Г, в 0 раз меньше, чем температура самовоспламенения. Тогда условия безыскрового запуска вихревой горелки должно определиться неравенством  [c.323]

Основу конструкции вихревого горелочного устройства технологического назначения составляет вихревое форсуночное устройство, обеспечивающее высокое качество распыла по мелкости капель и равномерности факела, выполненная в виде усеченного конуса, ограниченного с торцев полусферической крышкой 3 и соплом-диафрагмой 5, соединенных между собой корпусом вихревой камеры 4. Диафрагма 5 снабжена центральным соплом 6, из которого происходит истечение факела продуктов смесеобра-  [c.350]

На рис. 17-11 показана приблизительно длина факела для различных газо-горелочных устройств. Самый длинный факел образуется при использовании диффузионной ао релки (схема а, />20d), самый короткий факел — при пользовании горелкой с полным предварительным смешением (схема г, 1я М), почему такую горелку условно называют бесфакельной.  [c.235]

В этих установках сырое топливо из бункера подается питателем в нижнюю часть шахты, расположенной над мельницей, или при установке сепараторов иного типа (см. рис. 22-4,6 и 22-4, в) непосредственно в мельницу. Подсушка топлива происходит в процессе размола в мельнице горячим воздухом, подаваемым дутьевым вентилятором из возду-хойодогревателя. Готовая пыль из шахты или сепаратора иного типа выносится в топку через амбразуру или более сложное горелочное устройство, а крупные недомолотые частицы его возвращаются в мельницу. Необходимое для полного сгорания топлива количество дополнительного воздуха подается в топку в качестве вторичного через шлицы, размещенные над амбразурой и под ней, или через те или иные каналы го-релочного устройства.  [c.271]

Кольцевая камера сгорания размещена между радиальным диффузором компрессора и обоймой турбины высокого давления в общем корпусе турбоагрегата. Она дискового типа, состоит из двух полукольцевых частей с горизонтальным разъемом. Горелочное устройство камеры состоит из цилиндрических регистров, равномерно расположенных по окружности с установленными в них горелками типа, ,грибок . Горелки присоединены к кольцевому трубчатому коллектору изогнутыми трубками со штуцерными разъемами. Коллектор топливного газа выполнен разъемным и оснащен одним газопроводящим патрубком и двадцатью отводами с установленными в них дроссельными шайбами диаметром 7 мм.  [c.34]

Семигорелочная камера сгорания предназначена для осуществления непрерывного процесса окисления газообразного топлива в потоке сжатого воздуха, поступающего в камеру из воздухоподогревателя, имеет смеситель вихревого типа и состоит из горелочного устройства фронтового устройства вихревого смесителя корпуса камеры с крышкой.  [c.42]

Горелочное устройство состоит из шести основных и одной дежурной горелок, двух воспламенителей. Основные горелки расположены по окружности и соединены общим кольцевым коллектором, подводящим газ. Дежурная горелка расположена в центре и конструктивно объединена с двумя воспламенителями. Основная горелка состоит из головной части, топливопроводящей трубы и фланца для крепления горелки к крышке камеры сгорания. Фронтовое устройство предназначено для подачи первичного воздуха в зону горения, смешения его с газовым топливом и стабилизации факела на всех режимах работы. Вихревой смеситель предназначен для смешения продуктов сгорания с вторичным воздухом и получения достаточно равномерного поля температур на выходе из камеры сгорания. Корпус камеры и крышка образуют прочный каркас, воспринимающий внутреннее давление воздуха. Корпус представляет собой цилиндрический барабан с двумя врезанными в него овальными, переходящими в круглые патрубками, заканчивающимися фланцами. По этим патрубкам в камеру подводится воздух. Крышка является днищем корпуса и состоит из штампованной овальной части и фланца для соединения с корпусом камеры. На крышке располагают наварыши для крепления горелок и кольцевой коллектор основного газа с двумя входными патруб- ками.  [c.42]


Важным резервом является экономия электрической и тепловой энергии и топлива промышленностью, сельскохозяйственными, коммунально-бытовыми потребителями и на транспорте, т. е. развитие уже известных и внедрение новых энергоэкономичных прогрессивных технологий, в том числе таких, кж использование непрерывной разливки стали, кислородных конвертеров, комбинированного дутья доменных печей в черной металлургии, автогенных процессо1в в цветной металлургии, мощных энерготехнологических агрегатов, в химической промышленности, сухого способа производства цемента, более эффективных горелочных устройств в котельных и печных агрегатах. и т. п. За счет мер такого характера, а также путем модернизации энергоиспользующего оборудования и за счет организационных мероприятий должна быть обеспечена в 1985 г. экономия топливно-энергетических ресурсов на 160—170 млн. т условного топлива, в том числе 70—80 млн. т условного топлива за счет снижения норм энергопотребления.  [c.42]

Научные и промышленные исследования по созданию и отработке в эксплуатации горелочных устройств, обеспечивающих снижение образования окислов азота в котельных агрегатах, будут продолжены в 1981—1985 гг. на Средне-Уральской ГРЭС, Рефтинской ГРЭС и Эки-бастузской ГРЭС-1 с выдачей исходных данных для проектирования промышленных горелок. Будут -продолжены стендовые исследования и проектные разработки по осуществлению широкого внедрения на мощных газомазутных котлах топочно-горелочных устройств с подовой компоновкой горелок. Кроме того, намечается продолжить разработку и внедрение методов снижения содержания окислов азота в отходящих газах парогенераторов мощностью 500 и 800 МВт, работающих на различных углях. Для кардинального решения этой проблемы в текущем пятилетии ставится задача объединить усилия энергетиков и энергомащиностроителей в целях использования результатов этих исследований при проектировании, котлоагрегатов.  [c.319]

Котел типа ПКК однобарабанный конвективный с естественной циркуляцией выполнен в П-образной компоновке, конструкция котла позволяет его открытую установку. Отбросные газы вместе с высококалорийным топливом (природным газом или мазутом) сжигаются в неэкранированном горизонтальном предтопке, в котором установлены специальные горелочные устройства. Из предтопка продукты сгорания поступают в подъемный газоход, в котором размещены испарительные поверхности нагрева, выполненные в виде конвективного пучка из труб диаметром 38x3 мм, и пароперегреватель. В котлах с давлением 2,4 МПа пароперегреватель одноступенчатый, а в котлах с давлением 4,5 МПа пароперегреватель имеет две ступени, между которыми установлен поверхностный регулятор перегрева.  [c.140]

Обобщен опыт Подольског машиностроительного завода имени С. Орджоникидзе в области конструирования, исследования, изготовления и эксплуатации горелочных устройств паровых котлов. Описаны схемы подачи рабочих сред, компоновка горелочных устройств, конструктивные особен ости горелок. Приведены данные об устройствах управления, автоматизации и защиты. В приложении дан справочный материал, содержащий технические характеристики горелочных устройств ЗиО.  [c.2]


Смотреть страницы где упоминается термин Устройства горелочные : [c.430]    [c.430]    [c.430]    [c.2]    [c.25]    [c.218]    [c.308]    [c.320]    [c.351]    [c.354]    [c.406]    [c.41]    [c.146]    [c.229]    [c.318]    [c.2]    [c.406]   
Котельные установки (1977) -- [ c.146 ]



ПОИСК



Вихревые горелочные устройства

Вязкость, давление, температура и расход мазута для горелочных устройств и форсунок

Горелочно-дутьевые и загрузочные устройства

Горелочное устройство АР-90 завода Ильмарине

Горелочные и топочные устройства

Горелочные устройства и надежность работы циркуляционных контуров топочных камер

Горелочные устройства котельных агрегатов

Горелочные устройства топок с шахтными мельницами

Горелочные устройства, пути улучшения и интенсификация работы топочных каСуществующие горелочные устройства котельных устаноГорелочные устройства с предварительной газификацией мазута и двухступенчатое сжигание топлива

Исследования аэродинамики топочных камер и горелочных устройств

Конструктивные характеристики горелочных и топочных устройств

Модернизация горелочных устройств паровых котлов ДКВР

Надежность горелочных устройств

Определение минимальной длительной нагрузки регулировочного диапазона котлоагрегата без изменения состава вспомогательного оборудования и количества работающих горелочных устройств

Способы сжигания. Конструкции топочных и горелочных устройств

Унификация горелочных устройств

Установки для подачи воды в котлы Устройства горелочные

Экспериментальные работы по горелочным устройствам



© 2025 Mash-xxl.info Реклама на сайте