Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения алгебраические линейны обыкновенные

Сущность вариационных методов решения задач по теории изгиба пластинок заключается в приведении основного дифференциального уравнения в частных производных к системе линейных алгебраических уравнений или к обыкновенному дифференциальному уравнению.  [c.153]

Теория ассоциативных конечномерных алгебр была применена для исследования алгебраической приводимости систем линейных обыкновенных дифференциальных уравнений с переменными коэффициентами в работе [46]. Б ней был предложен термин алгебраически приводимые дифференциальные системы . Изложение данного параграфа следует этой работе.  [c.265]


Компонентные уравнения могут быть линейными или нелинейными, алгебраическими, обыкновенными дифференциальными или интегральными. Эти уравнения получаются на основе знаний о конкретной предметной области. Для каждого элемента моделируемого технического объекта должны быть получены компонентные уравнения. Это может оказаться длительной и трудоемкой процедурой. Но эта процедура выполняется однократно с одновременным накоплением библиотеки подпрограмм моделей элементов.  [c.67]

Весьма привлекательна идея сведения обыкновенного дифференциального уравнения к алгебраическому, уравнения в частных производных с двумя аргументами к обыкновенному, уравнения в частных производных с п аргументами к уравнению также с частными производными, но с п — 1 аргументами, поскольку уменьшение числа аргументов в уравнении, как правило, упрощает отыскание его решения. Добиться уменьшения числа аргументов любого из перечисленных дифференциальных уравнений (в случае их линейности) принципиально возможно с помощью интегрального преобразования. Разберемся в этом вопросе на примере обыкновенного линейного дифференциального уравнения с постоянными коэффициентами, содержащего единственный аргумент t, исключение которого трансформирует дифференциальное уравнение в алгебраическое. Операторный метод весьма эффективен и находит широкое применение, например, в некоторых задачах теплопроводности [15]. В данной главе для иллюстрации метода приведены решения задач о прогреве тел простой формы стержня полубесконечного и стержня конечных размеров, а также круглой пластины.  [c.193]

Остановимся на общей структуре пособия. В первой главе рассматривается часто встречающаяся в инженерной практике задача расчета средних температур по моделям с сосредоточенными параметрами. Здесь же изложены методы решения систем линейных и нелинейных алгебраических уравнений и обыкновенных дифференциальных уравнений, дано описание соответствующего стандартного программного обеспечения. Подробно разобраны примеры программ расчета стационарных и нестационарных температур для системы, состоящей из твердых тел и движущихся жидкостей. Изучение первой главы необходимо для понимания материала следующих.  [c.4]

Тепловые проводимости, теплоемкости и мощности могут зависеть от искомых температур. Поэтому в общем случае получающиеся системы уравнений являются нелинейными. Однако при решении систем нелинейных уравнений обычно организуют итерационный процесс, при котором определение очередного приближения проводится путем решения системы линейных уравнений, в которой проводимости, теплоемкости и мощности рассчитаны по значениям температур, найденным на предыдущей итерации. Решение систем линейных алгебраических уравнений лежит также в основе некоторых методов решения систем обыкновенных дифференциальных уравнений-  [c.9]


Таким образом, МКЭ позволяет свести задачи нестационарной и стационарной теплопроводности к решению системы обыкновенных дифференциальных уравнений (2.34) первого порядка относительно узловых температур и системы линейных алгебраических уравнений  [c.57]

Для pe ui-ния системы обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами и заданными начальными условиями составляют систему алгебраических операторных уравнений относительно неизвестных изображений искомых функций, образующих частное решение данной дифференциальной системы. Решая систему, находим эти изображения Fi(p).....  [c.47]

Е теории изгиба пластинок такой подход позволяет свести интегрирование основного дифференциального уравнения в частных производных к решению системы линейных алгебраических уравнений или к решению обыкновенного дифференциального уравнения.  [c.151]

В способе Л. Б. Канторовича краевая задача для уравнения в частных производных (Пуассона) заменена краевой задачей теории обыкновенных дифференциальных уравнений. Но можно вообще избегнуть решения дифференциальных уравнений, а свести задачу к линейной алгебраической системе уравнений, задавая целиком форму решения и распоряжаясь неизвестными введенными в него постоянными. Например, полагаем для прямоугольника  [c.418]

Простейший нелинейный вариант теории осесимметричных многослойных анизотропных оболочек на основе обобщенной гипотезы ломаной линии (9.2) построен. Нормальная система обыкновенных дифференциальных уравнений (9.32), (9.33), граничные условия (9.34), система линейных алгебраических уравнений (9.38) - (9.40), алгебраические соотношения  [c.202]

Сначала с целью создания основы для анализа периодической системы будет выполнен анализ линейной стационарной системы. Хотя основным объектом исследования в настоящ,ей главе являются периодическая система и особенности ее поведения, решение стационарных систем проще, и они более широко используются. Рассмотрим систему, описываемую обыкновенными дифференциальными уравнениями вида х = Лх + Вх, где А я В — постоянные матрицы. Вектор состояния х имеет размерность п. Динамические характеристики этой системы определяются собственными значениями и собственными векторами матрицы А. Система порядка п имеет п собственных значений Я/ (/= ,..., ) и соответствующих им собственных векторов U/, являющихся решениями системы алгебраических уравнений А — kjl)Uj = 0. Эти однородные уравнения имеют ненулевые решения только в том случае, когда det(y4 — kl) =  [c.341]

В первом разделе рассмотрена общая процедура решения задач статики, динамики и теплопроводности с помощью МКЭ, даны методы, формулы и библиотека подпрограмм вычисления соответствующих матриц и векторов простых типовых конечных элементов прямолинейных стержней постоянного поперечного сечения (рис. 1.2), прямоугольных в плане оболочек (рис.. 3), тонких треугольных, четырехугольных и прямоугольных в плане пластин (рис. 1.4), круговых колец треугольного, четырехугольного и прямоугольного поперечного сечения (рис. 1.5), четырех-, пяти- и шестигранных объемных элементов (рис. 1.6). Изложены методы и алгоритмы расчета приведена библиотека подпрограмм решения систем линейных алгебраических уравнений, нелинейных функциональных уравнений, обыкновенных дифференциальных уравнений.  [c.11]

Рассмотренные методы решения обыкновенных дифференциальных уравнений, блоки аппроксимации линейных и нелинейных функциональных и временных зависимостей составляют стандартное математическое и техническое обеспечение АВМ. К специальному математическому и техническому обеспечению аналоговых вычислительных машин относятся методы и устройства моделирования краевых задач, линейных и нелинейных алгебраических уравнений, задач расчета производных и функций чувствительности, дискретных, нестационарных и стохастических систем, уравнений в частных производных, задач оптимизации и геометрических задач. Специальное математическое и техническое обеспечение требуется при встраивании АВМ в экспериментальные установки и испытательные стенды для имитации реальных процессов, регистрации и обработки результатов испытания. Предметом специального рассмотрения может служить теория и практика аналого-цифровых вычислительных комплексов. Некоторые составляющие специального математического и технического обеспечения АВМ изложены ниже.  [c.92]


Нам надо решить систему обыкновенных дифференциальных уравнений (37.21) — (37.23) содержащую две искомые функции А п V. По отношению к йУ/йХ и Л/Л уравнения наши представляют си-стему двух линейных алгебраических уравнений. Решая эту систему,  [c.351]

К инвариантному МО одновариантного анализа относятся методы и алгоритмы для решения систем линейных и нелинейных алгебраических уравнений (НАУ), обыкновенных дифференциальных уравнений. Использование для этого библиотечных стандартных программ операционных систем ЭВМ в большинстве случаев неэффективно, так как в этих программах не учитываются особенности ММ объектов проектирования в САПР (высокая размерность систем, разреженность матриц в моделях, жесткость систем ОДУ, умеренные требования к точности анализа и др.).  [c.34]

Большинство методов решения уравнений в частных производных основано на приведении их тем или иным путем к некоторой совокупности обыкновенных дифференциальных или алгебраических уравнений. Среди таких методов одним из наиболее важных для линейной теории является метод Фурье разделения переменных и его обобщение — интегральные преобразования, которым и посвящена данная глава.  [c.44]

Api ехр(кх) — для давления и аналогично для других параметров. В результате получается система алгебраических уравнений и линейных обыкновенных дифференциальных уравнений по г. Решение этой системы используется для выхода из начальной особой точки. Вне некоторой ее окрестности решение продолжается численным интегрированием осредненных уравнений и уравнений микрозадачи.  [c.736]

Начальные условия для системы обыкновенных уравнений (5.7) получаются естественным образом из начальных условий (5.2) разложение (5.3) подставляем в зависимости (5.2) и значения а (0), Aaldt t-o получаем из условия ортогональности невязки всем функциям системы ф1,. .., фдг данная процедура приводит к следующим двум системам линейных алгебраических уравнений относительно  [c.214]

Таким образом, в отличие от метода Бубнова — Галеркп-на, при котором интегрирование дифференциального уравнения сводится к решению системы алгебраических уравиеншц по методу Канторовича — Власова интегрирование дифференциального уравнения в частных производных заменяется интегрированием системы обыкновенных дифференциальных уравнений. Если задача линейная, то получается система обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.  [c.202]

Схемотехническое проектирование радиотехнических (RF) схем отличается рядом особенностей математических моделей и используемых методов, прежде всего в области СВЧ-диапазона. Для анализа линейных схем обычно применяют методы расчета полюсов и нулей передаточных характеристик. Моделирование стационарных режимов нелинейных схем чаще всего выполняют с помощью метода гармонического баланса, основанного на разложении неизвестного рещения в ряд Фурье, подстановкой разложёния в систему дифференциальных уравнений с группированием членов с одинаковыми частотами тригонометрических функций, в результате получаются системы нелинейных алгебраических уравнений, подлежащие решению. Сокращение времени в случае слабо нелинейных схем достигается при моделировании СВЧ-устройств с помощью рядов Вольтерра. Анализ во временной области для ряда типов схем выполняют с помощью программ типа Spi e путем интегрирования систем обыкновенных дифференциальных уравнений.  [c.136]

При расчете сложных трубопроводов составляется баланс расходов в узловых точках (равенство притоков и оттоков жидкости) и баланс напоров на кольцевых участках (равенство нулю алгебраической суммы потерь напора для каждого кольца). Для ламинарного режима течения задача сведется к системе линейных алгебраических уравнений. Для турбулентного режима течения задача становится значительно сложнее необходимо решать систему трансцендентных уравнений, которая не имеет общего алгоритма решения. Во многих случаях задачу расчета сложной системы трубопроводов при установившемся режиме течения в турбулентной области проще решать методом установления, используя уравнение Бернулли для не-установившегося течения. В этом случае расчет сводится к задаче Коши для системы обыкновенных дифференциальных уравнений (см. раздел 15.2), которая алгоритмически ясна и имеет несколько стандартных программ для решения. Гидравлический расчет трубопроводов, особенно сложных, обычно проводится с помощью ЭВМ. Более подробно обсуждаемый вопрос целесообразно изучать на практических занятиях путем решения задач.  [c.137]

В теории ребристых оболочек широко применяется также метод непосредственного интегрирования уравнений ребристой оболочки обычно с помощью двой- " ных и одинарнйх тригонометрических рядов. Так как коэффициенты уравнений в местах присоединения ребер терпят разрыв, переменные не разделяются. Использование двойных рядов приводит к бесконечной системе алгебраических урав- яений, а одинарных в направлении, нормальном к осям ребер, к бесконечной системе обыкновенных дифференциальных уравнений. При использовании разложения в окружном направлении для оболочек со шпангоутами или в продольном направлении для оболочек со стрингерами переменные разделяются, поэтому здесь дело обстоит проще. Получается система обыкновенных дифференциаль- ных уравнений восьмого порядка со слагаемыми в виде дельта-функций. Перенося эти слагаемые в правую часть, можно представить частное решение с помо- -щью формулы Кошн в виде интегралов с переменным верхним пределом. Процесс дальнейшего решения становится рекуррентным и сводится к последова- I тельному решению систем восьми алгебраических уравнений. Число таких решений равно числу ребер плюс одно решение. Указанный метод использовал Н. И. Карпов [40] при расчете круговой цилиндрической оболочки с продольны- ми ребрами, а также П. А. Жилии [24] при анализе осесимметричной задачи для круговой цилиндрической оболочки со шпангоутами. При использовании формулы Коши необходимо знать систему нормальных фундаментальных функций (ядро Коши). Метод определения ядра Коши для линейных дифференциальных уравнений е переменными коэффйциеитами развит в книге И. А. Биргера [4]. Он осно- г -ван на решении так называемых нормальных интегральных уравнений (аналоги уравнений Вольтерра). В указанной книге дан также ряд приложений теории нормальных интегральных уравнений.  [c.324]


Функция 1]) определяется путем решения системы обыкновенных линейных алгебраических разностных уравнений, составленных для узлов полученной сетки, ограниченных контуром поперечного сечения инструмента. Решение системы уравнений производится способом Либмана, при котором значение функции в каждом узле сетки равно среднему арифметическому из четырех звачений функции в соседних узлах. Задаваясь произвольным значением функции во всех внутренних узлах сетки (все значения равны нулю, или все значения равны единице, или все значения равны х] -Ь г/ и т. д.) и значением функции на контуре, которое всегда равно х 4- г/ )/2, последовательным расчетом значений для каждого узла переходим от выбранного первого приближения значения ко второму, третьему и т. д. до тех пор, пока разница значений функции в каждой точке при очередном расчете не будет отличаться от значения функции в этих же точках при предыдущем приближении на заданную величину (в разработанной программе эта величина принята равной 0,5% от значения 3 ). Геометрическая жесткость сечения / о определится как сумма объемов, в основании которых лежит квадрат (прямоугольник) сетки, а высота равна средней высоте из четырех ребер призмы высотой ф,-.  [c.26]

Занятия по теме Методы решения задач на ЭВМ для преподавателей механики проводятся в виде курса лекщ1й, в котором излагаются численные методы, наиболее часто использующиеся в задачах теоретической механики. К ним относятся методы решения систем линейных алгебраических уравнений, нахождения корней функций, вычисления определенных интегралов, решения систем обыкновенных дифференциальных уравнений [1,2].  [c.20]

Если метод Галеркина сводит решение уравнения в частных производных к системе линейных (или нелинейных) алгебраических уравнений относительно коэффициентов разложения, то метод Фаэдо—Галеркина сводит решение к системе обыкновенных  [c.553]


Смотреть страницы где упоминается термин Уравнения алгебраические линейны обыкновенные : [c.219]    [c.450]    [c.182]    [c.372]    [c.19]    [c.172]   
Численные методы газовой динамики (1987) -- [ c.14 , c.181 , c.186 ]



ПОИСК



I алгебраическая

Линейные алгебраические уравнени

Линейные уравнения

Луч обыкновенный

Уравнения алгебраические линейны

Уравнения алгебраические линейны линейные



© 2025 Mash-xxl.info Реклама на сайте