Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теневой Контроль поверхности

Все оптические приборы предназначены для измерения величины щероховатости поверхности по параметру Rz. Приборы теневого сечения (ПТС-1) применяют для контроля грубо обработанных поверхностей с 1-го по 3-й классы. Приборы светового сечения (ПСС-2) применяют для контроля поверхностей с 4-го по 9-й классы. Приборы, основанные на принципе интерференции света — интерферометры, применяют для контроля тонко обработанных поверхностей с 10-го по 14-й классы шероховатости.  [c.242]


Оба теневых метода могут использоваться при контроле объектов с грубо обработанными поверхностями. Эти методы успешно применяют для контроля стыков арматуры железобетона периодического профиля.  [c.130]

Рнс. 13, Схема теневого метода контроля сферической поверхности  [c.70]

Контроль отливок. Ультразвуковой контроль отливок проводится эхо-и зеркально-теневым методами обычно с помощью нормальных преобразователей [47]. Дефекты литья (поры, раковины, шлаковые включения) имеют объемный характер и могут быть обнаружены при прозвучивании с разных сторон. Поэтому контроль ведут, как правило, в одном направлении по кратчайшему расстоянию от поверхности, удобной для ввода УЗК. Однако имеются опасные зоны, которые должны быть проверены в направлении, перпендикулярном к плоскости наиболее вероятного развития трещин. Кроме того, в отливках встречаются волосовидные дефекты, плохо отражающие ультразвук. О наличии таких дефектов судят по ослаблению донного сигнала.  [c.255]

Зеркально-теневой метод применяют, например, при контроле рельсов с целью обнаружения вертикальных трещин в шейке. Им выявляют дефекты большего размера, чем эхо-методом. Преимущество этого метода перед зеркально-теневым заключается в одностороннем доступе к поверхности изделия.  [c.100]

Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большими коэффициентами затухания и рассеяния акустических волн, например, при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но и (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия на одной поверхности и измеряют время и амплитуду сквозного сигнала головной или поверхностной волны.  [c.102]

В связи с изложенным при дефектоскопии теневым методом контактные преобразователи почти не применяют контроль ведут иммерсионным или щелевым способом. Если погружение изделия в иммерсионную ванну связано с техническими трудностями, используют локальные ванны, струйные преобразователи, преобразователи с эластичными мембранами и другие приемы стабилизации акустического контакта. Однако даже в этом случае шероховатость поверхности изделия, окалина на ней вызывают нестабильность акустического контакта.  [c.117]

Помехи при контроле теневым методом возникают таклсе от несоосности преобразователей. При настройке излучателя и приемника выполняют их юстировку на соосность, добиваясь максимальной амплитуды сквозного сигнала, затем их жестко закрепляют. Однако непараллельность поверхностей изделия, случайный его поворот при перемещении вызывают появление несоосности в процессе контроля.  [c.117]


На рис. 2.11, а, б показано влияние непараллельности поверхностей и поворота изделия на отклонение лучей. Поверхность на локальном участке расположена неперпендикулярно к оси ранее отъюстированных преобразователей, хотя поверхности изделия параллельны. Контроль выполняют иммерсионным способом. Смещение центрального луча относительно оси приемника вычисляют по формуле т = X (sin Р)Св/са- При толщине изделия 50 мм и отношении скоростей звука в изделии и иммерсионной жидкости Сд/Сд 4 угол р = 2° обусловит смещение т = 7 мм. Это приведет к ослаблению сквозного сигнала на 8. .. 12 дБ. Приблизительно такое же ослабление вызовет непараллельность поверхностей (рис. 2.11, б) при р = 3°. Для уменьшения ослабления сигнала по этим причинам следует использовать преобразователи с широкой диаграммой направленности при этом, однако, исключается возможность применения теневого метода для контроля изделий сложной формы.  [c.117]

Зеркально-теневой метод. Основной информационный параметр при контроле этим методом — ослабление амплитуды отражения от противоположной поверхности (дна) изделия. Существуют несколько способов контроля зеркально-теневым методом 131 ]. Перечислим основные нормальным преобразователем по ослаблению первого (рис. 2.14, а) и п го (рис. 2.14, б) донных сигналов продольной волны (чаще всего п == 2) двумя наклонными преобразователями по ослаблению донного сигнала поперечной (рис. 2.14, й) и продольной (рис. 2.14, г) волн.  [c.120]

Помехи, действующие при контроле теневым методом, проявляются также и при контроле зеркально-теневым методом. Непа-раллельность поверхностей изделия вызывает большее ослабление донного сигнала, чем сквозного, поскольку отраженный луч сильнее смеш,ается от акустической оси. Еш е сильнее эти помехи сказываются на качестве контроля по второму донному сигналу. Влияние помех уменьшается при использовании преобразователя с широкой диаграммой направленности.  [c.122]

Значительно снижает качество контроля зеркально-теневым методом случайное изменение отражающих свойств донной поверхности, обусловленное ее неровностью, например, вследствие коррозии. Неровности глубиной Я/8 ослабляют донный сигнал приблизительно на 10 %, а глубиной Ш — на 20 %. Второй донный сигнал уменьшается соответственно на 20 и 36 %.  [c.122]

Наиболее распространенный объект контроля зеркально-теневым методом — железнодорожные рельсы. Метод обеспечивает обнаружение дефектов, дающих слабое обратное отражение, ориентированных перпендикулярно поверхности качения, которая служит поверхностью ввода. При контроле рельсов возникают помехи вследствие поперечного смещения преобразователя. При этом акустическая ось не совпадает с осью поперечного сечения рельса. В результате часть энергии не входит в шейку рельса, оставаясь в его головке. Экспериментально установлено, что эти помехи уменьшаются при использовании преобразователей  [c.122]

Помехи от многократных отражений. При контроле эхо- или зеркально-теневым методами в иммерсионном варианте возникают ложные сигналы в результате многократных отражений УЗ-импульса в иммерсионной жидкости между поверхностями изделия и преобразователя. При малой толщине слоя иммерсионной жидкости эти сигналы приходят раньше, чем сигнал, отраженный от донной поверхности изделия.  [c.284]

Диффузионной сваркой можно соединять как однородные, так и разнородные материалы. Так как сварные изделия, выполняемые такой сваркой, как правило, имеют сравнительно небольшие размеры и плоскость соединения часто параллельна поверхности изделия, контроль целесообразно вести эхо- и эхо-теневым методами прямым совмещенным или раздельно-совмещенным преобразователем.  [c.354]

Контроль кромок осуществляют теневым методом. Каждый акустический блок (контроля левой и правой кромки) состоит из излучающего и приемного преобразователей, примыкающих с зазором до мм к верхней -и нижней поверхностям полосы. Каждый преобразователь разделен на восемь секций размером 5x6 мм. Излучающие секции с помощью генератора и электронного коммутатора возбуждаются поочередно. Дефект значительной ширины обнаруживается несколькими секциями, протяженный дефект фиксируется в течение нескольких периодов.  [c.380]

Акустический контакт осуществляют посредством подачи в клиновидный (с углом клина, равным 3°) щелевой зазор по капиллярам, выходящим на контактную поверхность акустической системы, Капилляры выполнены так, чтобы в процессе движения акустической системы возникающее в результате действия сил поверхностного натяжения воды пониженное давление в щелевом зазоре способствовало заполнению этого зазора. Контроль качества акустического контакта осуществляется этими же преобразователями в теневом варианте в момент, когда поиск дефекта не проводится.  [c.388]


Таким образом, теневой метод контроля практически может быть применен в ограниченных случаях. Однако в ходе выполняемой работы теневой метод также был экспериментально проверен на различных режимах контроля. Наиболее удобным для контроля является эхо-теневой или эхо-метод, который может быть использован при одностороннем доступе к контролируемому изделию, этому благоприятствует также высокая чистота поверхности подшипника.  [c.260]

Приборы теневого сечения ПТС-1 обычно применяются для контроля грубо обработанных поверхностей (с 1 по 3-й класс чистоты) по параметру Общее увеличение прибора 30 , поле зрения 8 мм габаритные размеры 220 X 190 X 100 мм, вес 2 кг.  [c.121]

Следует ограничивать на поверхности литых деталей количество выступающих частей, особенно тех, которые на модели выполняются отъемными. Для контроля выполнения этого требования должны отсутствовать теневые участки при воображаемом освещении детали параллельными лучами в направлении, перпендикулярном к плоскости разъема формы (фиг. 66).  [c.173]

Признаком обнаружения дефекта при зеркально-теневом методе контроля является уменьшение амплитуды ультразвукового сигнала, отраженного от противоположной поверхности (см. рис. 5.21,6).  [c.505]

Пьезопреобразователи, предназначенные для ввода волны в направлении, перпендикулярном поверхности, называют прямыми, или нормальными, а для ввода под некоторым углом - наклонными, или призматическими. Пьезопреобразователи включаются по раздельной, совмещенной или раздельно-совмещенной схемам. В последнем случае в одном корпусе размещаются два пьезопреобразователя, разделенных между собой экраном. При падении ультразвуковой волны на поверхность раздела двух сред, в частности на границу дефекта, часть энергии отражается, что и используется при контроле. Для анализа распространения ультразвуковых колебаний в контролируемом изделии используют три основных метода теневой, зеркально-теневой и эхо-метод.  [c.351]

Основной метод ультразвукового контроля сварных соединений и основного металла — эхо-импульсный, который проводится в соответствии с ГОСТ 14782—76. Ультразвуковой импульс, вводимый в изделие нормально или под углом к его поверхности, отражается от дефекта и принимается или тем же искателем, или другим, расположенным рядом. Известны и другие методы — эхо-теневой и теневой, которые применяют значительно реже.  [c.120]

Теневой метод основан на получении звуковой тени в местах нарушения сплошности материала. О наличии дефекта судят либо по уменьшению энергии УЗ-коле-баний в расположенной за дефектом зоне, либо по изменению фазы УЗ-колебаний, огибающих дефект. Чувствительность метода зависит от расстояния между местом дефекта и задней гранью детали. Этот метод позволяет определять размеры, а иногда и конфигурацию дефектов (раковин, трещин, расслоений), но не дает возможности судить о глубине их залегания. Для проведения контроля в этом случае необходимо иметь двухсторонний доступ к проверяемой конструкции, а также обеспечить надежный акустический контакт излучателя и приемника с поверхностью изделия, который создают применением иммерсионной среды (чаще всего воды). Возможность использования теневого метода зависит от размеров иммерсионной ванны и конфигурации изделия. Для выполнения контроля теневым методом разработан прибор типа ДУК-8 (ДУК-8М).  [c.564]

Наряду с электромеханическими профилометрами и профилографами для контроля шероховатости поверхности применяются еще оптические приборы (двойные микроскопы, приборы теневого сечения и микроинтерферометры).  [c.488]

В 10—30-х годах текущего столетия были опробованы методы микроскопического анализа изучение под микроскопом поперечного шлифа электролитически покрытой поверхности, измерение под микроскопом неровностей поверхности по репликам из желатина и т. д. Предпринимали попытки косвенной оценки неровностей поверхности по потерям энергии маятника при торможении его неровностями поверхности во время качания, по разности размеров деталей до и после доводки, по предельному углу регулярного отражения света, по теневой картине поверхности на экране с увеличенными изображениями поверхностных дефектов, по расходу воздуха через участок контакта сопла с испытуемой поверхностью, по четкости изображения растра на испытуемой поверхности или на экране после отражения от нее светового пучка, по электрической емкости контактирующей пары испытуемая поверхность — диэлектрик с нанесенным слоем серебра , по нагрузке на индентер при определенном его сближении с испытуемой поверхностью, по изображению мест плотного соприкосновения призмы с неровностями поверхности и т. д. Были опробованы методы исследования рельефа поверхности с помощью стереофотограмм и стереокомпаратора. На производстве в этот период доминировали органолептические методы контроля визуальное сравнение с образцом, сравнение с помощью луп, сравнение на ощупь ногтем, краем монеты и т. п. В 30-х годах был предложен и реализован в двойном микроскопе метод светового сечения (Линник, Шмальц), а также метод микроинтерференции и основанные на нем микроинтерферометры, сочетающие схемы микроскопа и интерферометра Майкельсона. В этот же период  [c.58]

В МВТУ им. Н. Э. Баумана разработан прибор для ультразвукового контроля косостыковых паяных соединений по двум схемам зеркально-теневой — для контроля поверхности разделки и эхо-импульсиый — для контроля углов разделки. Контроль ведется наклонным искателем с углом призмы Р = 50° дефектоскопами УДМ-1М, УДМ-3, ДУК-66, портативным транзисторным ДУК-66П, специализированными ДУК-11ИМ, ДУК-1 ЗИМ и др.  [c.363]

Методы определения шероховатости изделий из древесины и древесных материалов установлены ГОСТ 15612—70. При выборе прибора для контроля шероховатости исходят из предполагаемой шероховатости поверхности поверхности с Ягмикс до 60 мкм (8—12-го классов) контролируют микроскопом МИС-11 неровности величиной гмакс в диапазоне 100. .. 500 мкм (4—7-й классы шероховатости), а также 800. .. 1600 мкм (1—2-й классы) за исключением волнистости измеряют микроскопом теневого сечения поверхности ТСП-4 неровности 800. .. 1600 мкм, включая волнистость, — индикаторным глубиномером. Техника измерений изложена в стандарте и более подробно в документации на приборы.  [c.23]


Теневым методом можею обнаружить дефекты поверхности размером менее 1/100 длины волны света. Схема теневого метода контроля сферической поверхности показана на рис. 13. Точечный источник света помещают вблизи центра кривизны С зеркала. Рядом с ним располагают непрозрачный экран. При наблюдении поверхности зеркала 2 в зависимости от положения экрана можно увидеть картины I—IV. Если нож 1 точно расположить в плоскости источника, то его перемещение в направлении, перпендикулярном к оси зеркала, вызовет плавное уменьшение яркости изображения. При этом дефекты поверхности проявляются в виде  [c.70]

Контроль поковок и штамповок. Поковки (типа роторов и дисков турбин, заготовок штампов, станин, валов, деталей самолетов, в том числе из легких сплавов, и т. п.) контролируют эхо-методом [17, 21, 47]. В этих изделиях могут быть выявлены флокены, остатки усадочных раковин, инородные включения, окисные плены, ликва-дионные скопления и другие внутренние деф екты, которые практически невозможно обнаружить просвечиванием. Контроль ведется на частоте 2—5 МГц эхо- и. зеркально-теневым методами (ГОСТ 12503—75 и ГОСТ 24507—80). Для ответственных изделий предусматривается про-звучивание каждого объема в трех взаимно перпендикулярных направлениях или близких к ним. Например, прямоугольные поковки штампов контролируют прямыми преобразователями но трем граням, а длинные цилиндрические поковки (валы) контролируют по боковой поверхности — прямым и наклонным преобра-  [c.256]

Сварные точки контролируют зеркально-теневым методом (рис. 71). Признаком отсутствия сварки является приход донного сигнала от первого листа к приемному преобразователю. Перемещая преобразователь по поверхности изделия, определяют размеры сварной точки. Недостатком данного способа является невозможность отличить наличие литого ядра (важнейший признак хорошей сварки) от слипания. Этим недостатком не обладают способы контроля в процессе сварки. Один из способов следующий в верхний лист вводится нормальная волна, которая испытывает отражение от расплавленного ядра в момент его образования. По интервалу времени от момента появления эхо-сигнала, сообщающего о начале формирования ядра, до момента выключения сварочного тока можно оценить размеры ядра. Согласно другому способу излучающий и приемный преобразователи. встроены в электроды сварочной машины. Контроль ведут теневым методом. В момент сжатия свариваемых листов электродами через зону сварки проходят УЗ К. В момент образования распла-  [c.262]

Зеркальный эхо-метод применяют также для выявления дефектов, ориентированных перпендикулярно поверхности ввода. Им выявляют более мелкие дефекты, чем зеркально-теневым, но при этом требуется, чтобы в зоне расположения дефектов был достаточно большой участок ровной поверхности (см. рис. 2.3, б). При контроле рельсов, например, это требование не выполняется, поэтому возможно применение только зеркально-теневого метода. Дефект В можно выявить совмещенным наклонным преобразователем, расположенным в точке А. Однако в этом случае зеркально отраженная волна уходит в сторону и на преобразователь попадает лишь слабый рассеянный сигнал. Преобразователи, расположенные в точках С илиВ, обнаруживают дефект с более высокой чувствительностью.  [c.100]

Анализ акустического тракта выполним для схемы, изображенной на рис. 2.14, а. Отражение от бесконечной плоскости можно рассматривать как зеркальное отражение падающих на плоскость акустических волн (см. подразд. 2.2). В соответствии с этим акустическое поле, возникающее в результате отражения от бесконечной поверхности, можно нредсгавнть как акустическое поле мнимого излучателя, рассеянное на реальном и мнимом изображении экрана-дефекта. Мнимые излучатель и дефект расположены зеркально-симметрнчно по отношению к действительному излучателю и дефекту (рис. 2.15), В результате акустический тракт при контроле зеркально-теневым  [c.120]

Непараллельность поверхностей изделия при контроле иммерсионным способом также оказывает более сильное влияние на прошедший сигнал, чем при контроле теневым методом. Зеркальнотеневой метод чаще всего применяют в контактном или щелевом вариантах, при которых помехи от поворота изделия не возникают, поскольку параллельность поверхностей изделия и преобразователя обеспечивается самим способом контакта.  [c.122]

Специфическая помеха, возникающая при контроле зеркальнотеневым методом, — интерференция донного и эхо-сигналов от дефекта. Если дефект расположен посредине изделия, т. е. xilx = = 0,5, сигнал, двукратно прошедший расстояние между поверхностью ввода и дефектом, складывается с донным сигналом и изменяет его амплитуду. Для практики контроля эта помеха не очень существенна, поскольку зеркально-теневой метод предназначен для выявления таких дефектов, эхо-сигнал от которых к преобразователю не приходит.  [c.123]

Учитывая специфику поверхности, формы сварного шва и кон-тро./тирусмого изделия, виды и ориентацию встречающихся дефектов, допустимость их в сварном шве можно оценить практически только по амплитуде сигнала. Так как нестабильность акустического контакта достаточно велика — 3. .. 6 дБ, то для ее компенсации необходима резко падающая амплитудная зависимость, градиент которой для двух соседних уровней дефектности должен превышать указанные значения на 8. .. 10 дБ. На рис. 6.44, 6.45 представлены результаты экспериментов на моделях дефектов, расположенных в нижней и центральной частях шва. Видно, что при теневом методе контроля (см. рис, 6.44) это условие выполняется для всех недопустимых внутренних дефектов (кривая 2), а при поиске корневых дефектов необходимо, чтобы расстояние от передней грани ПЭП до центра дефекта не превышало 15. .. 20 мм (кривая, /).  [c.343]

Стальное литье контролируют УЗ после термической обработки (нормализации, отжига), измельчающей структуру металла частота ультразвука—1—2 МГц. Возможен контроль некоторых отливок простой формы, отлитых центробежным способом, не прошедших термообработку. Контроль проводится эхо- или зеркально-теневым методом чаще всего прямыми преобразователями. Прозвучивать следует по кратчайшему расстоянию от поверхности сканирования, удобной для ввода УЗ. Следует отметить, что контроль литья по необработанной шероховатой поверхности до настоящего времени представляет сложную задачу, так как необходимы специальные преобразователи, которые промышленность не выпускает.  [c.54]

При контроле качества сплошности металла труб применяют эхоимпульсный, эхо-теневой, теневой или зеркально-теневой методы. Трубы малых и средних диаметров с небольшой толщиной стенки контролируют продольными волнами, а толстостенные — поперечными по окружности или вдоль образующей. При контактном способе контроля рабочую поверхность преобразователя притирают по поверхности трубы или используют насадки и опоры на преобразователь. В качестве испытательного образца используют бездефектный отрезок трубы.  [c.56]

При контроле и измерении шероховатости поверхностей пользуются методом визуальной оценки, контактными и бесконтактными профильными методами, к которым относятся методы светового сечения, теневой проекции, микроинтерференцион-иый и растровый методы. В тех случаях, когда не представляется возможным непосредственно измерить шероховатость поверхности, с измеряемой поверхности снимают слепок и определяют параметры шероховатости поверхности по слепку.  [c.345]

В большинстве случаев этот метод применяют для определения качества отливок несложной формы. Однако использование для ввода ультразвуковых колебаний специальных искательных головок с контактными поверхностями, выполненными по форме контролируемого участка детали, позволяет применять этот метод и для контроля отливок сложной конфигурации с грубой, шероховатой поверхностью. Особенно эффективен этот метод в условиях эксплуатации литтлх деталей, так как позволяет обнаруживать дефекты (усталостные трещины и др.) на ранних стадиях их образования без разбора узла машины или прибора. Наиболее часто для контроля качества отливок применяют теневой, резонансный и импульсный (эхо-метод) методы ультразвуковой дефектоскопии.  [c.496]


Проекторы предназначаются для контроля деталей со сложными фасонными поверхностями, как, например, кулачков, резьбовых калибров, мелкомодульных зубчатых колес, часовых резьб, шаблонов, червячных и дисковых фрез и др. Имеется много различных типов отечественных и зарубежных проекторов, используемых в машиностроении и в приборостроении. Принцип действия почти всех типов проекторов мало чем отличается один от другого и заключается в том, что контролируемая деталь или часть ее проектируется в увеличенном виде на экран. На светлом фоне экрана получается теневое изображение детали. На экран может помещаться чертеж, выполненный на стекле или кальке, с одним или двумя предельными контурами детали, в масштабе, равном увеличению проектора. Такой чертеж называется проек-  [c.346]

Разработка методики дефектоскопии или проектирование установки для автоматического контроля начинается с выбора схемы контроля метода контроля, типа волн, поверхности, через которую вводятся ультразвуковые волны, угла ввода. Для контроля металла применяют в основном ахо-, теневой п зеркально-теневой методы. Предпочтение отдается эхо-методу, как наиболее чувствительному и помехоустойчивому. Теневым методом контролируют тонкие, слоистые (например, паяные) металлы с простой формог поверхности. Как правило, он требует доступа к двум поверхностям изделия. Зеркально-теневой метод применяют при доступе к одной поверхности, когда дефекты не дают эхо-сигнала (например, из-за наличия мертвой зоны или в связи с неблагоприятной ориентацией дефекта), но ослабляют данный сигнал.  [c.224]


Смотреть страницы где упоминается термин Теневой Контроль поверхности : [c.25]    [c.254]    [c.259]    [c.118]    [c.73]    [c.228]    [c.180]    [c.471]    [c.212]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.73 ]



ПОИСК



Контроль поверхности

Теневая поверхность

Теневой луч



© 2025 Mash-xxl.info Реклама на сайте