Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики аэродинамического экспериментальные

Аэродинамические характеристики определяются экспериментально по данным ис-  [c.164]

Производительность и полный напор дымососа (вентилятора) связаны между собой зависимостью, называемой напорной характеристикой. Каждая машина в зависимости от аэродинамической схемы при постоянной частоте вращения имеет свою напорную характеристику, определяемую экспериментально. Напорные характеристики машин приводятся в каталогах заводов-изготовителей.  [c.334]


В настоящее время пока еще мало экспериментальных данных для построения статистических характеристик аэродинамических сил, действующих на конструкцию при галопировании, поэтому определять эти силы следует как для установившегося потока. Конструкции, для которых квазистационарная модель не может быть использована, надо рассчитывать на основе данных испытаний аэроупругих моделей.  [c.91]

Математическая модель машины или аппарата отражает их рабочие процессы с известным приближением. Расчетные соотношения, входящие в математическую модель, как правило, отражают закономерности отдельных явлений, составляющих рабочий процесс, без учета взаимного влияния. Например, формулы для определения гидравлического сопротивления различных участков гидравлического тракта получены на основе экспериментов в идеализированных условиях (равномерное поле скоростей на входе, однородное температурное поле, отсутствие внешних возмущений и т. д.). В реальных конструкциях эти условия не соблюдаются. Поэтому иногда при разработке нов ых конструкций прибегают к техническому моделированию устройств, когда до постройки машины или аппарата их отдельные качества или итоговые характеристики изучаются на моделях в лабораторных условиях. Например, при продувке уменьшенных моделей самолетов или автомашин в аэродинамических трубах можно выявить их сопротивление движению и зависимость этого сопротивления от формы их отдельных элементов, устойчивость машины при дв ижении и режимы, опасные с точки зрения потери устойчивости, и т. д. Таким образом, техническое моделирование представляет собой разновидность экспериментального исследования, при котором изучаются характеристики рабочего процесса конкретной машины или аппарата на модельной установке.  [c.23]

Аэродинамические характеристики летательных аппаратов или их отдельных элементов можно определить не только теоретически с помощью соответствующих уравнений движения жидкости (газа), но и экспериментально. При проведении экспериментов с летательными аппаратами должны выполняться условия аэродинамического подобия.  [c.74]

В рабочей части сверхзвуковой аэродинамической трубы воздух имеет скорость 700 м/с и температуру 193 К. Определите, с какой скоростью на высоте Я = 5 км в атмосфере Земли должен двигаться летательный аппарат, модель которого продувалась в этой трубе, чтобы можно было воспользоваться результатами экспериментальных исследований влияния сжимаемости на аэродинамические характеристики.  [c.76]


Чтобы воспользоваться результатами экспериментальных исследований влияния сжимаемости на аэродинамические характеристики, число М движения летательного аппарата на высоте Я =5 км должно быть равно числу М потока в рабочей части аэродинамической трубы, т. е. = М = 2,513.  [c.86]

Экспериментальные исследования показали, что для улучшения аэродинамических характеристик крыла (повышения Су ах) наиболее целесообразно применение сдува пограничного слоя. Такой сдув производится обычно вблизи носков крыла, а также расположенных на нем различных органов управления и средств механизации (элеронов, элевонов, щитков и др.). Причем вдув воздуха для этих целей через профилированную щель может осуществляться даже со сверхзвуковой скоростью при сравнительно небольших расходах.  [c.104]

С начала второго десятилетия XX в. в связи с необходимостью решения конкретных задач, выдвигаемых авиацией, перед теоретической и экспериментальной аэродинамикой наиболее остро встали две основные проблемы изучение влияния удлинения и формы крыла в плане на аэродинамические характеристики крыла и исследование аэродинамических свойств профилей. Одновременно практика самолетостроения требовала создания методов аэродинамического расчета самолета и проектирования винтов.  [c.287]

Для определения аэродинамических характеристик профиля нам придется использовать график на рис. 2, стр. 13, приложение П1 в [21]. Для профиля Н-16 экспериментальные газодинамические характеристики даны на стр. 18, приложение HI в [21 ].  [c.197]

Проблеме изучения аэродинамических характеристик ступеней паровых турбин посвящена обширная литература, систематизирующая богатый расчетный и экспериментальный опыт. Успехи в области аэродинамики турбомашин позволили получить весьма высокие к. п. д. некоторых ступеней выпускаемых промышленностью паровых турбин. Однако, несмотря на заметный прогресс аэродинамического совершенствования проточных частей осевых турбин, еще имеются резервы их улучшения.  [c.205]

Далее будет показано, что две из них ( о и Рг) являются основными аэродинамическими характеристиками решеток, определяемыми при экспериментальном и аналитическом их исследовании. Две же другие (ф и ф ) однозначно связаны с коэффициентом потерь 0-  [c.15]

Исследование влияния предшествующего венца на аэродинамические характеристики решетки в экспериментальной турбине представляет большие трудности. Кроме того, в настоящее время это не дает надлежащей точности.  [c.79]

Описанная экспериментальная ГТУ позволила накопить ценный опыт — прежде всего технологический и конструкторский. Целью проведенных исследований настоящего опытного образца турбины явилось снятие всех типовых характеристик, получение практических данных, относящихся к коэффициентам аэродинамических моментов, возникающих на лопатках компрессора и турбины, исследование эффективности водяного охлаждения и автоматического регулирования, а также устранение эксплуатационных неполадок. На базе накопленного опыта при создании и исследовании данной ГТУ в дальнейшем будут созданы газотурбинные установки самых различных мощностей и областей применения.  [c.167]

Для изучения распространения ударной волны и получения некоторых ее характеристик представляет интерес исследование развития пограничного слоя при внезапном возникновении движения. С этой целью в качестве экспериментальной установки была применена так называемая ударная аэродинамическая труба. В настоящей статье описаны экспериментальные исследования некоторых неустановившихся кратковременных процессов в пограничном слое. Одним из таких процессов является развитие пограничного слоя на стенках ударной трубы. Этот процесс представляет интерес, поскольку в нем выявляется причина отклонения потока от идеального, который согласно теории невязкого потока описывается разрывной (ступенчатой) функцией. Другая задача связана с рассмотрением процесса развития пограничного слоя до достижения им установившегося состояния на моделях, укрепленных внутри ударной трубы. Это явление представляет особый интерес для изучения кратковременных неустановившихся и установившихся потоков, обтекающих модели, поскольку распределение давления на моделях зависит от состояния пограничного слоя.  [c.229]


Полученные при продувке плоских пакетов профилей расчетные и экспериментальные характеристики относятся к аэродинамически гладким поверхностям.  [c.58]

При профилировании решеток необходима приближенная оценка их аэродинамических характеристик и, в частности, потерь на трение, кромочных и концевых потерь. Такая оценка производится по обобщенным экспериментальным зависимостям.  [c.118]

Аэродинамические характеристики нормализованных решеток определены экспериментально по данным испытаний изолированных решеток в статических условиях и в экспериментальных турбинах.  [c.120]

В аэродинамических исследованиях процессов тепло- и массообмена определение характеристики турбулентности по коэффициенту перемежаемости является наиболее простым. Более сложные экспериментальные исследования процессов турбулентности газовых потоков связаны с определением количественных зависимостей и значений степени турбулентности. Для этих исследований используются электронные схемы термоанемометров (см. рис. 4-21).  [c.273]

Характеристики решетки могут быть получены как теоретически, так и экспериментальным путем. В авиационной практике используют главным образом экспериментальные характеристики решеток. Их обычно определяют путем продувок плоских компрессорных решеток на специальных установках (в аэродинамических трубах).  [c.57]

Характеристики решеток могут быть получены как теоретическим, так и экспериментальным путем. Методы гидродинамической теории решеток, берущей свое начало еще из работ Н. Е. Жуковского и С. А. Чаплыгина и развитой в трудах Н. Е. Кочин.а, Л. А. Симонова и др., находят широкое применение в практике создания осевых насосов и стационарных компрессоров. В авиационной практике используются главным образом экспериментальные характеристики компрессорных решеток. Первые экспериментальные исследования решетки профилей были проведены Н. Е. Жуковским в 1902 г. в аэродинамической трубе Московского государственного университета. В настоящее время испытания плоских компрессорных решеток проводятся на специальных установках. Схема одной из них изображена на рис. 2.25. Поток воздуха, обтекающий  [c.80]

Экспериментальная и расчетная оценки аэродинамических характеристик диффузоров  [c.271]

Предлагаемая вниманию читателей книга посвящена проблеме воздействия акустических колебаний на турбулентные струи. В ней подытожены многолетние экспериментальные исследования авторов, а также других исследователей - отечественных и зарубежных - по разработке акустических методов управления аэродинамическими и акустическими характеристиками дозвуковых и сверхзвуковых газовых струй.  [c.6]

В предыдущих главах 2 и 3 было показано, как при воздействии слабых акустических возмущений можно осуществлять управление аэродинамическими и акустическими характеристиками дозвуковой турбулентной струи. В настоящей главе рассмотрены некоторые результаты экспериментального исследования воздействия интенсивных периодических и, в частности, акустических возмущений на аэродинамические характеристики турбулентной струи. Мы здесь не будем касаться энергетической выгодности такого способа управления турбулентными струями. Отметим лишь, что рядом авторов были выполнены экспериментальные исследования характеристик турбулентных струй с высокой интенсивностью периодического возбуждения. Однако сравнение результатов этих исследований затруднено тем обстоятельством, что периодический во времени закон модуляции расхода в струе определялся конструктивными особенностями устройств (прерывателей потока), создающих пульсации скорости в струе. Это обстоятельство затрудняет обобщение или сопоставление результатов опубликованных работ, так как структура течения в возбужденной струе, по-видимому, зависит от спектрального состава периодических пульсаций скорости и масштаба турбулентности в выходном сечении сопла. Отмеченное обстоятельство подтверждается существенными отличиями закономерностей распространения сильно возбужденных турбулентных струй, установленными в работах различных авторов [4.2,4.4,4.6,4.7,4.9].  [c.129]

Ниже излагаются результаты экспериментального исследования аэродинамических и акустических характеристик прямоугольных выемок на плоской поверхности в присутствии устройств, предназначенных для подавления пульсаций давления на поверхности выемки [10.6]. Исследования проводилось на пластине размером 1 мх1 м и толщиной 0,05 м с профилированными носовой и кормовой частями и боковыми шайбами высотой 0,15 м. Исходный вариант прямоугольного выреза шириной 400 мм имел сечение 60 X 60 мм. Глубина выреза могла варьировался за счет перестановки по вертикали съемного дна. Испыгания проводились в аэродинамических трубе с открытой рабочей частью диаметром 2,2 м при установке пластины под нулевым углом атаки. Для турбулизации пограничного слоя перед вырезом на поверхности пластины вблизи носка был закреплен проволочный турбулизатор диаметром 0,6 мм.  [c.227]

В настоящее время основным методом оценки аэродинамических характеристик и выбора профилей является использование атласов и нормалей, в которых собраны и обобщены экспериментальные данные по большому числу разнообразных профилей. Так, в [12] приведены характеристики более чем 60 типов профилей, которые можно разбить на группы (табл. 3.9).  [c.256]

Математическая модель процесса взаимодействия капельного потока с воздушной средой приземного слоя атмосферы, приведенная в гл. 2, не учитывает спектр капель в факелах разбрызгивания. Тепловые и аэродинамические характеристики учитывались экспериментально определяемыми объемными коэффициентами тепло- и массоотдачи. Создание математической модели факела разбрызгивания значительно расширяет возможности математического моделирования изучаемого процесса. С помощью уравнения движения одиночной капли в поле сил тяжести и заданной функции распределения капель по размерам были рассчитаны локальные скорости капель как функция времени [12]. По траекториям капель и дальности их полета определялась локальная плотность орошения. Результаты расчетов показали, что протяженность области выноса капель Хтгх существенно зависит от скорости ветра при w = = 2 м/с ЛГтах = 20,5 М если Ш = 18 м/с, то Хтах = 2380 м и при этой скорости ветра 95% осадков выпадает на расстоянии 231 м. Непосредственные наблюдения за выпадением капель на небольших брызгальных бассейнах и брызгальных каналах [27, 39] показали, что на расстоянии 2—6 м от границы бассейна обнаружены ледовые образования, имеющие вид торосов высотой 0,7 м ледяная корка и изморозь покрывали участок  [c.125]


Все приведенные выше характеристики были получены первоначально при разработке данных элементов. Обстоятельное экспериментальное исследование характеристик аэродинамических генераторов колебаний рассмотренного типа было проведено в дальнейшем А. С. Тумайкиным и И. Я. Шаровой. Это исследование проводилось в связи с задачами использования аэродинамических генераторов колебаний в системах управления агрегатами в химической и нефте-газовой промышленности. Основной целью исследования являлось выяснение влияния на характеристики аэродинамического генератора колебаний каждого в отдельности из размеров его проточной части и определение диапазона изменения давлений питания, при которых в системе генерируются колебания. Некоторые из характеристик, полученных при проведении этой работы, показаны на рис. 14.15.  [c.163]

Полученные выше соотношения для характеристики аэродинамических режимов работы дымовых труб проверялись на экспериментальном материале, полученном МЭИ, ВНИПИ Теплопроект и Союзтехэнерго на действующих газоотводящих трубах.  [c.74]

Экспериментальные исследования проводились с целью выяснения как распределения порозности насыпных слоев, так и распределения скоростей поперек их сечений н, в частности, влияния стенки канала (пристеночного эффекта) на аэродинамические характеристики слоя. Такими исследованиями занимались Н. М. Жаворонков [42], М. Э. Аэров и др. [10—13, 75, 76]. Достаточно обширные исследования аэродинамики реакторов с зернистым слоем проведены Н. М. Тихоновой [134].  [c.13]

При изучении динамических характеристик стержневых конструкций 1важное значение имеет определение внутреннего трения в материале и внешнего аэродинамического трения. Именно эти виды трения определяют внутренние усилия и перемещения, возникающие в конструкции при дей- ствии динамических нагрузок. Экспериментальное исследование внутреннего и внешнего трения важно и для правильного расчета отдельных элементов резонансных испытательных и технологических машин, так как для них резонансный режим работы является рабочим.  [c.173]

Первое десятилетие XX в. характеризуется широким развитием экспериментальных исследований плоских и изогнутых пластинок в аэродинамических трубах и использованием полученных результатов для определения аэродинамических характеристик крыльев первых самолетов, совершивших успешные полеты. Создается ряд аэродинамических лабораторий и специализированных научных организаций на Западе Аэродинамический институт в Риме (Г. Финци и Н. Сольдати), аэродинамическая лаборатория при Национальной физической лаборатории в Англии (NPL) строится ряд аэродинамических труб в Германии, Канаде, США. Основное внимание при экспериментальных исследованиях и теоретических разработках в этот период уделяется подъемной силе крыла. В Англии, Италии, Канаде, Франции и США преобладал эмпирический путь в определении аэродинамических характеристик крыла. Наоборот, в России и несколько позже в Германии основное внимание обращали на теоретическое решение вопроса, при котором эксперимент играл вспомогательную роль [27].  [c.286]

Тепловая установка, потребляюш,ая топливо или другой вид энергии, должна иметь технический паспорт, составленный на основе тщательно проведенных измерений различных показателей ее работы во время специальных теплотехнических испытаний и во время длительной эксплуатации. К паспорту должны быть приложены рабочие чертежи, размеры в которых уточнены по фактическому выполнению. Особенное значение имеют размеры рабочего пространства, его ограждений, длины и сечения дымоходов, позволяюш,ие рассчитывать тепловые балансы и аэродинамические сопротивления. Перед проведением теплотехнических испытаний производится полный осмотр установки, устраняются все недостатки, производится анализ записей в эксплуатационных журналах и показаний контрольно-измерительных приборов. Составляются программа исследований, а также схема расстановки дополнительных контрольно-измерительных приборов повышенной точности. Тепловые характеристики, положенные в основу рекомендуемых наивыгоднейших режимов, должны быть составлены только на основании экспериментальных данных, так как определение их посредством теоретических расчетов обычно недостаточно ввиду сложности явлений, протекающих в реальных условиях.  [c.20]

В ряде случаев авиационные конструкции эксплуатируются в условиях сложного взаимодействия спектров аэродинамической температурной и силовой нагруженности. Воздействие силовых факторов и температуры на этапах полетного цикла порождает интенсивное протекание процессов перераспределения напряжений и деформаций, изменение структурных параметров и механических характеристик материала, накопление циклических и длительных повреждений. Изменение несущей способности элементов авиационных конструкций оказывается особенно выраженным для малоциклового нагружения при наличии пластических деформаций и нагрева, когда изменение механических свойств по числу циклов и по времени обусловливает заметную неста-ционарность кинетики местных напряженно-деформированных состояний. Расчет долговечности в таких условиях, как отмечается в гл. 1, 2, 4, 8 и 11, осуществляют на основе решений соответствующих краевых задач, реализуемых экспериментально, с помощью численных решений или приближенных аналитических методов.  [c.114]

Недостаток общепринятой методики расчета аэродинамического сопротивления поперечно-обтекаемых трубчатых поверхностен, заключающийся в неправильном учете температурного фактора, а также появление новых экспериментальных материалов, позволяющих уточнить зависимость сопротивления от геометрических характеристик пучков, привели к необходимости установить новые расчетные формулы. Для этой цели были использованы экспериментальные работы ВТИ [Л. 37, 40, 41], а также работы В. М. Антуфьева и Л. С. Козаченко [Л. 33] и Ф. П. Казакевича [Л. 42].  [c.78]

Аэродинамические характеристики осесимметричных тел и каналов, вычисленные с учетом влияния поперечной кривизны поверхности, сопоставлялись с соответствующими экспериментальными данными, причем было обнарул<ено достаточно хорошее совпадение между результатами эксперимента и расчета.  [c.205]

До настоящего времени накоплено мало экспериментального материала по исследованию неподвижных и вращающихся решеток на влажном паре. Отсутствуют надежные данные, характеризующие структуру потока двухфазной среды, механизм образования потерь энергии, а также изменение основных аэродинамических характеристик решеток в достаточно широком диапазоне режимных и геометрических параметров. Особый недостаток ощущается в опытных и теоретическях исследованиях дисперсности и скоростей жидкой фазы в решетках турбинных ступеней. Для расчета экономичности проточных частей турбин, эрозии лопаток и сепарации влаги необходимо знать траектории движения капель, их взаимодействие с неподвижными и вращающимися лопаткамц, долю влаги, остающуюся на поверхностях в виде пленок, характер двил ения этих пленок под воздействием парового потока, центробежных и кориолисовых сил. Естественно, что отсутствие пе речис-лениых данных не позволяет решать задачи выбора оптимальных профилей сопловых и рабочих решеток, работающих на влажном паре. Следовательно, накопление опытных материалов, полученных методами дифференцированного изучения физических особенностей процесса, представляет большой теоретический и практический интерес.  [c.50]


Чаплыгин также впервые изучил вопрос о величине продольного момента, действующего на крыло, считая этот вопрос существенным элементом теории крыла. На основе исследования общей формулы для мол1ента подъемной силы он установил простую зависимость продольного момента от угла атаки, которая лишь через несколько лет была получена экспериментально и явилась впоследствии одной из основных аэродинамических характеристик крыла. Он показал, что коэффищтент продольного момента при больших углах атаки положителен и уменьшается с уменьшением угла атаки, имея отрицательную величину при угле атаки, соответствующем нулевой подъемной силе. При отрицательных углах атаки момент, оставаясь отрицательным, увеличивается по абсолютной величине при увеличении абсолютного значения угла атаки крыла.  [c.277]

Экспериментальный метод определения аэродинамических характеристик состоит в измерении параметров потока в контрольном сечении и обработке результатов опытов по формулам (9.4), (9.7), (9.8), (9.9). Контрольное сечение, в котором производятся измерения, обычно выбирается на таком расстоянии от данной решетки, которое соответствует положению фронта соседней решетки в турбомашнне. В таком случае возможно упрощение основных формул и соответственно программы эксперимента. Дело заключается в следующем. Возмущения, вносимые решеткой, могут быть вызваны 1) неоднородностью потенциального потока 2) вязкостью жидкости. Возмущения первого рода связаны с тем, что решетка, помещенная в поток (даже невязкой жидкости), делает его неоднородным, т. е. поле скоростей и давлений завис.чт от координат. Возмущения второго рода связаны с вязкостью жидкости и выражаются главным образом неоднородностью поля скоростей в кромочных следах (неоднородность в пограничном слое сейчас не рассматривается). Эта классификация возмущений несколько условна для областей вблизи выходных кромок, где сбегают пограничные слои. Возмущения в потенциальном потоке быстро гаснут при отдалении от решетки (по экспоненциальному закону, см. в разд. 4.4). Следовательно, поля углов и давлений (а значит, и плотностей) выравниваются довольно быстро. Наиболее неоднородным остается поле скоростей в кромочных следах. Будем считать, что поле углов и давлений в контрольном сечении практически однородно. Тогда можно считать, что действительная плотность равна теоретической, так как давления в обоих потоках по условию одинаковы, а небольшим различием в температурах можно пренебречь.  [c.230]

Для подбора компрессорных решеток и установления количественных зависимостей используются обобщенные характеристики, которые строятся на основании многочисленных экспериментальных исследований и теоретических соображений. Такие обобщенные характеристики не могут быть полностью универсальными, т. е. пригодными для любого типа профилей и решеток, так как количество параметров, которыми можно варьировать, слишком велико. Однако они дают возможность подобрать аэродинамическую решетку в классе оптимальных с приемле.мой для инженерной практики точностью.  [c.248]

Излагаются результаты экспериментального исследования управления аэродинамическими и акустическими характеристиками дозвуковых и сверхзвуковых турбулентных струй путем воздействия на них акустических возмущений различных интенсивности и частоты. Исследованы когерентные структуры в дозвуковых турбулентных струях и их восприимчивость к воздействию гармонических акустических возмущений. Исследованы гене-ращ1я и подавление турбулентности в дозвуковых струях при низкочастотном/высокочастотном акустическом возбуждении дозвуковых струй и, соответственно, увеличение/уменьшение широкополосного шума таких струй. Рассмотрены активные и пассивные методы управления характеристиками сверхзвуковых неизобарических струй. Анализируются методы математического моделирования дозвуковых турбулентных струй с точки зрения их способности описать влияние периодического возбуждения на интенсификацию/ослабление турбулентного смешения при низкочастотном/высокочастотном возбуждении.  [c.2]

Вторая глава посвящена экспериментальному исследованию воздействия слабых акустических гармонических возмущений на аэродинамические характеристики турбулентных струй. Продемонстрированы интенсификация перемешивания (генерация турбулентности) при низкочастотном возбуждении и ослабление перемешивания (подавление турбулентности) при высокочастотном возбуждении. Излагаются результаты исследования влияния уровня акустического возбуждения, режима течения в начальном пофаничном слое на срезе сопла и начальной турбулентности на реализацию обоих эффектов - интенсификации и ослабления перемешивания.  [c.8]

Аэродинамические и акустические характеристики струи (это в равной степени относится к экспериментальной установке или натурному турбореактивному двигателю) могут заметно измениться под действием акустических возмущений, распространяющихся вдоль по потоку по тракту экспериментальной установки и ТРД. Поэтому начальные условия истечения следует дополнить уровнем и спектром шума в выходном сечении сопла. Особенно существенно наличие дискретных составляющих в этом спектре, которые могут заметно изменить аэродинамические и акустические характеристики струи. Для струи в спутном потоке, кроме перечисленных параметров, требуется еще знать параметры спутного потока в плоскости выходного сечения сопла, профили скорости и энергии турбулентности, параметр спутности т = Uoo/uq. Начальные распределения скорости, температуры и концентрации примеси важны еще и потому, что они определяют инварианты струи - условия постоянства избыточного импульса, избыточного теплосодержания и избыточного содержания примеси [1.1,1.14], справедливые при отсутствии продольного градиента давления в спутном потоке.  [c.35]

Следует отметить одну особенность рассмотренных выше работ. Она состоит в том, что при двухчастотном акустическом возбуждении турбулентной струи на основной частоте и ее субгармонике удается добиться существенного эффекта управления аэродинамическими характеристиками струи только при низких частотах. Здесь двухчастотное акустическое возбуждение приводит к существенной интенсификации смешения по сравнению с одночастогным возбуждением. Заметное ослабление турбулентного смешения в струе при ее высокочастотном двухчастотном акустическом возбуждении по сравнению с одночастогным возбуждением в рассмотренных работах не было зафиксировано. Ряд экспериментальных исследований такого возбуждения были проведены лишь на участке струи протяженностью X = (О - 0,8)d и I = (О - l,5)d.  [c.97]

Ниже представлены результаты экспериментального исследования влияния формы воздействующего на струю акустического сигнала на ее аэродинамические характеристики. Экспериментально исследовано изменение средней скорости и продольных пульсаций скорости в фиксированной точке на оси струи (x/d = 8) при поперечном акустическом облучении струи при различных-Ma TOTax, уровнях и форме звукового сигнала [2.19]. Экспериментальная установка описана в работе [2.22]. Ее основные параметры диаметр сопла d = 0,02 м, скорость истечения uq = 10 и 20 м/с, соответствующие числа Рейнольдса Re = uod/u = 1,4 10 и 2,8 10 . Начальный пограничный слой был близок к ламинарному.  [c.102]

Формула (5.29) для сильно загнутых вперед лопастей не обеспечивает требуемой точности определения и поэтому такие машины необходимо подвергать экспериментальной доводке. В последние годы в вентиляторостроении в связи с отсутствием надежного метода расчета и наличием большого числа аэродинамических схем центробежных вентиляторов, разработанных в разных организациях, при создании новых машин используют, как правило, уже известные аэродинамические схемы. Характеристики этих вентиляторов определяют пересчетом данных, полученных при испытании моделей [17].  [c.450]


Смотреть страницы где упоминается термин Характеристики аэродинамического экспериментальные : [c.351]    [c.148]    [c.457]   
Теория элементов пневмоники (1969) -- [ c.370 , c.410 , c.414 ]



ПОИСК



X характеристики аэродинамически

Аэродинамический шум

Калугин, А.Ю. Луценко, Е.Г, Столярова (Москва). Экспериментальные исследования структур отрывного обтекания и аэродинамических характеристик тел вращения с тормозными и управляющими устройствами

Характеристики аэродинамического

Экспериментальная и расчетная оценки аэродинамических характеристик диффузоров

Экспериментальное определение аэродинамических характеристик крыла

Экспериментальное определение аэродинамических характеристик профиля



© 2025 Mash-xxl.info Реклама на сайте