Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Струя, дозвуковая

По скорости газовых струй (дозвуковое, сверхзвуковое). Этот тип классификации оборудования относится только к газотермическим методам нанесения покрытий.  [c.419]

Рис. 7. Схемы течения в соплах и на начальном участке камеры смешения при работе эжектора на допредельных режимах в случае, когда обе струи дозвуковые (Я <1 Рис. 7. Схемы течения в соплах и на начальном участке <a href="/info/31254">камеры смешения</a> при работе эжектора на допредельных режимах в случае, когда обе струи дозвуковые (Я <1

Условие Р -Р при <С 1 выполняется на тех режимах, когда на входе в камеру смешения обе струи дозвуковые (н предельном случае а, — 1). Течение в сверхзвуковом сопле может быть при этом или дозвуковым, или сверхзвуковым с прямым скачком уплотнения внутри сопла (см. фиг. 54, а и б).  [c.170]

Так как с уменьшением коэффициента эжекции при условии )., = 1 полное, а следовательно, и статическое давление в цилиндрическом участке сопла газа низкого давления возрастают, то может наступить момент, когда внутрь сопла высоконапорного газа зайдет прямой скачок уплотнения и течение в выходном сечении сопла станет дозвуковым. Дальнейший расчет дроссельной характеристики с помощью системы уравнений (60) —(62) становится невозможным ввиду того, что для этих режимов в рассматриваемой гидравлической схеме расчета не удается найти связь между приведенными скоростями X, и >1 (условие Р —Р на режимах Л<0 применять нельзя, хотя обе струи дозвуковые). Не удается по тем же соображениям рассчитать дроссельную характеристику и на режимах, когда X, < 1 иХ < 1, однако эти режимы практического интереса не представляют.  [c.256]

В последние годы при исследовании шума дозвуковых турбулентных струй обнаружены новые явления, что позволило уточнить существующие представления о при[юде и закономерностях турбулентного шума и наметить пути его снижения. Было, в частности, показано, что шум турбулентной струи определяется не только начальными параметрами истечения (начальные профили скорости, энергии и масштаба турбулентности), но и влиянием наложенного акустического поля. Оказалось, что если не учитывать влияние самих установок и различных технических устройств, находящихся в акустически возбужденном состоянии, то их аэродинамические и акустические характеристики могут заметно отличаться от соответственных характеристик чистой турбулентной струи [3].  [c.126]

Рассмотрим в связи с этим результаты определения параметров когерентных структур в дозвуковых турбулентных струях. В последнее десятилетие обнаружены и всесторонне исследуются регулярные и когерентные структуры в самых различных турбулентных течениях с поперечным сдвигом [217, 250].  [c.127]

ДО 5,0 кет при напряжении 15—24 в и токе 30—210 а. При заостренной форме вольфрамового катода диаметром 6 мм наконечник не эродирует в течение всех испытаний. Измеряемые расходы твердых частиц колеблются от 0,08 до 4,5 г мин при использовании зубчатой передачи Уайта. Размеры частиц меди и окиси алюминия составляли почти 10 мк, а окиси магния — около 2 мк. Дозвуковая струя формировалась при истечении из отверстия ресивера диаметром 6 мм под давлением 40—90 мм рт. m. в вакуумированную трубу из стекла викор диаметром 76 jum и длиной 300 мм, соединенную с вакуумированным резервуаром и системой насосов.  [c.458]


Рис. 4.4. Дозвуковая газовая свободно истекающая струя Рис. 4.4. Дозвуковая газовая свободно истекающая струя
При М < 1 - режим истечения высоконапорной среды дозвуковой, т.е. скорость течения среды меньше скорости распространения в ней звука при М = 1 режим истечения звуковой и при М > 1 - сверхзвуковой. Скорость среды в потенциальном ядре струи при М < 1 выражается формулой [31-33]  [c.104]

Расчеты по этим формулам достаточно точны только для дозвукового потока. Объясняется это тем, что при торможении сверхзвукового потока перед насадком возникает ударная волна, пересекая которую газовые струи претерпевают значительные гидравлические потери. Поэтому давление в трубке J пневматического насадка при сверхзвуковом течении существенно отличается от полного давления набегающего потока, что делает формулы (68) и (72) в этом случае неприменимыми.  [c.33]

Рассмотрим теперь влияние на реактивную силу непостоянства давлений в плоскости выходного среза двигателя. Построим эпюру давления и скорости на срезе сопла (рис. d.l4). Для простоты остановимся на случае дозвукового истечения. Можно, например, представить себе такое обтекание двигателя, при котором давление вблизи выходного среза понижено, за счет чего местная скорость во внешнем потоке увеличивается. Давление внутри дозвуковой выхлопной струи является примерно таким же, как и на ее границе.  [c.53]

Если рассматриваемое тело представляет собой летательный аппарат, снабженный воздушно-реактивным двигателем, то в сверхзвуковой струе воздуха, которая тормозится при втекании в двигатель, также происходит скачок уплотнения. Принципиально можно представить себе и плавный переход сверхзвукового потока в дозвуковой, осуществляемый посредством специального обратного сопла, установленного на входе в двигатель. При этом не было бы потерь полного давления. Однако торможение сверхзвукового потока таким способом осуществить в полной мере не удается, в силу чего приходится мириться с существованием ударных волн и наличием соответствующего волнового сопротивления.  [c.114]

Об этом можно судить по экспериментальным данным для дозвуковой струи (рис. 7.14) и для сверхзвуковой струи при Мо=3 (рис. 7.15). Степень подогрева струй 0 в этих опытах ) была примерно одинаковой (соответственно 0 = Го/Гн = 1,85 и 0 = 2).  [c.385]

Рейнольдса. В случае дозвуковой затопленной осесимметричной струи (т = О, /см = О,/Ст = 1) из (71) —(76) получается  [c.395]

Расчеты и опыты показывают, что распределение параметров по длине струи и ее поперечные размеры зависят от разности давлений в струе и внешнем потоке на срезе сопла. При малых дозвуковых скоростях эта разность давлений относительно мала, зависит от формы выходного устройства, из которого вытекает струя, и, как показано в 8 гл. I, определяется по уравнению  [c.397]

Около оси струи 1на участке торможения криволинейный скачок переходит в прямой скачок уплотнения, получивший название диска Маха, за которым скорость течения становится дозвуковой. Периферийные линии тока образуют сверхзвуковое течение, которое, как следует из теоретических расчетов ) и экспериментов ), дважды пересекает криволинейный скачок 1 — l d и отраженный скачок d — п. Одна из линий тока 2—2) этой зоны течения изображена на рис. 7.31. Поверхность 1—1 (часть криволинейного скачка) представляет собой так называемый висячий скачок уплотнения, постепенно ослабляющийся с приближением к кромке сопла и полностью вырождающийся, немного не доходя до последней.  [c.411]

Если для случая дозвуковой скорости полета потери полного давления при торможении рабочей струи определялись только внутренним сопротивлением диффузора Од, то для случая сверхзвуковой скорости эти потери включают также волновое сопротивление Оп, т. е. определяются произведением коэффициентов сохранения полного давления в прямом скачке и в диффузоре (<1пО ).  [c.463]


Таким образом, при отношениях давлений, больших расчетного для данного сопла, эжектирующий газ в начальном участке смесительной камеры представляет собой расширяющуюся сверхзвуковую струю. Поток эжектируемого газа на этом участке движется между границей струи и стенками камеры. Так как скорость эжектируемого потока в начальном участке дозвуковая, то при течении по суживающемуся каналу поток ускоряется и статическое давление в нем падает.  [c.498]

При дозвуковом истечении эжектирующей струи наибольшее разрежение и максимальные скорости потоков достигались во входном сечении камеры. В данном случае минимальное значение статического давления и максимальная скорость эжектируемого потока достигаются в сечении 1, находящемся на некотором расстоянии от сопла, там, где площадь расширяющейся сверхзвуковой струи становится наибольшей. Это сечение принято называть сечением запирания.  [c.498]

Особенностью сверхзвуковой струи является то, что смешение ее с окружающим потоком на этом участке проходит значительно менее интенсивно, чем смешение дозвуковых потоков. Это связано с тем, что сверхзвуковая струя обладает повышенной устойчивостью по сравнению с дозвуковой струей, и размывание границ такой струи происходит слабее. Физические основы этого  [c.498]

С окружающей средой дозвуковая струя втягивает частицы внешнего потока и граница ее быстро размывается. В сверхзвуковом (относительно внешней границы) потоке аналогичное искривление границы и уменьшение сечения приводит к росту давления возникающая сила направлена не внутрь, а наружу потока и стремится восстановить исходное положение границы струи, выталкивая частицы внешней среды.  [c.499]

Дозвуковая струя втягивает внутрь поднесенный к границе легкий предмет, сверхзвуковая струя на расстоянии нескольких калибров от сопла имеет жесткую границу при попытке ввести в струю извне какой-либо предмет ощущается заметное сопротивление резко выраженной границы струи.  [c.499]

Таким образом, при докритических режимах работы эжектора, несмотря на наличие сверхзвуковой скорости в эжектирую-щей струе, эжектируемый газ в результате смешения не может приобрести сверхзвуковой скорости. Скорость смеси в камере будет дозвуковой, т. е. Яз < 1.  [c.530]

Приведенный в 3 метод расчета газового эжектора позволяет определить параметры эжектора — увеличителя тяги с учетом сжимаемости при больших отношениях давлений смешивающихся газов, больших скоростях и температурах в эжектирую-щей струе и тем самым уточнить полученные выше результаты. Расчет проводится для эжектора с заданными геометрическими размерами, т. е. параметрами а и /. Полное давление и температура эжектирующего газа р и Т для данного режима работы двигателя известны. Полное давление и температура торможения эжектируемого воздуха р и Т1 определяются по параметрам атмосферы Рв и и скорости полета с учетом потерь полного давления в воздухозаборнике. Далее, последовательно задаваясь различными значениями Я2, определяем параметры смеси газа и воздуха на выходе из диффузора. Реальным будет такой режим (такие значения коэффициента эжекции п и скорости истечения w ), при котором давление дозвукового потока в выходном сечении диффузора получается равным атмосферному давлению Ря.  [c.561]

При обтекании решетки пластин дозвуковым невязким потоком газа при докритических скоростях потери оказываются в точности равными потерям на удар, возникающим при расширении оторвавшегося с передней кромки потока, ширина которого увеличивается, согласно уравнению неразрывности и формуле (88), до ширины межлопаточного канала, равной з1п 0. Если в действительности, как это уже указывалось выше, при срыве струй с передних кромок образуется вихревое течение, то в этом случае суммарные потери включают в себя как потери, связанные с поддержанием вихревого течения у передней кромки, так и потери на последующее выравнивание потока в межлопаточных каналах решетки.  [c.92]

Первые задачи теории струй были поставлены и решены Г. Гельмгольцем (1868 г.), Г. Кирхгофом и Н. Е. Жуковским (1890 г.), С. А. Чаплыгин распространил указанную теорию на дозвуковые течения сжимаемой жидкости (1903 г.).  [c.250]

Наличие криволинейной звуковой линии приводит к зависимости критического перепада давления от формы трансзвуковой области, т. е. от величины (или 0о в случае конического суживающегося насадка). Для пояснения физического существа этого явления рассмотрим истечение газа пз плоского отверстия с прямолинейными стенками (рис. 4.14). Если скорость струи дозвуковая, то сечение, в котором линни тока становятся параллельными, а давление поперек струи постоянным, лежит на бесконечности (рис. 4.14, а). Если же скорость на границе струи звуковая, т. е. p tpo = n i), то это сечение находится на конечном расстоянии (при 0ц = л/2 л 0,6г ), а звуковая линия есть линия AB (рис. 4.14, б), нри этом расстояние увеличивается с уменьшением 0о [132]. Если теперь уменьшить внешнее давление так, чтобы отношение рв ро стало мень ше л(1), то граница струи и звуковая линия AB примут форму, иредставленную на рис. 4.14, в. Расширение течения в угловой точке А происходит до внешнего давления. Волны, исходящие из угловой точки, являются, естественно, волнами разрежения, а от звуковой линии они отражаются в виде волн сжатия. Если внешнее давление близко к критическому, т. е. р /ро л, 1), то волны Маха многократно отражаются от звуковой линии и иоверхности струи. От поверхности струи волны сжатия, исходящие от звуковой линии, отражаются в виде волн разрежения, следовательно, в звуковой линии подходят всегда волпы разренгения. Воздействие струи на звуковую линию прекращается вниз по потоку от характерис-  [c.161]


В некоторых работах [41, 232] представлены подробные данные о влиянии продольного и поперечного звукового облучения дозвуковых турбулентных струй на их аэродинамические характеристики. Обращают на себя внимание два эффекта взаимно противоположного характера, возникающие при аэроакустичес-ком облучении струи и соответствующих либо условию усиления генерации, либо условию ослабления турбулентности в пределах ее начального участка.  [c.127]

Опыты проводились с дозвуковой струей аргона (степень чистоты 99,996%), нагретого в дуге при температурах торможения в ресивере, куда подавались нагретая дугой струя и твердые частицы, составляющей от 1000 до 3000° К. Когда твердые частицы не вводятся, расход газа-носителя (также аргона) поддерживается таким образом, что обпщй расход аргона 25,6 г мин сохраняется во всех опытах. Подводимая к дуге мощность составляет от 0,5  [c.457]

Нужно отметить, что истинное давление, которое получается при торможении струи газа, может существенно отличаться от полного давления, определенного но формуле (68). Объясняется это тем, что в действительности торможение струи часто протекает не по идеальной адиабате, а с более или менее существенными гидравлическими потерями. Например, в диффузоре при дозвуковом течении газа уменьшение скорости обычно сопровождается вихреобразованиями, вносящими значительные сопротивления в газовый поток. При торможении сверхзвукового потока почти всегда образуются ударные волны, дающие специфическое волновое сопротивление. Итак, действительное давление в за-торможенно11 струе газа обычно ниже полного давления набегающей струи.  [c.32]

На применении уравнения Бернулли основан пневматический способ определения скорости потока, который состоит в том, что в поток вводится насадок (рис. 1.5), состоящий из двух трубок. Открытое отверстие одной из этих трубок (i) размещается в носовой части насадка (перпендикулярно к потоку), а отверстия второй трубки (2) расположены в боковой поверхности насадка (вдоль потока) при дозвуковой скорости замедление струи газа от встречи с насадком проходит 6ei3 каких-либо потерь, так как трение и вихреобраэование возникают уже на боковой поверхности насадка, т. е. после того, как струя минует область своего полного торможения, размещающуюся перед самым носиком насадка. По этой причине в первой трубке создается давление, почти в точности равное полному давлению набегающего потока во второй трубке, если ее входное отверстие достаточно удалено от носика, устанавливается давление, близкое к статическому давлению потока. Трубки J и 2 сообщаются с манометром, измеряющим давление. Отношение измеренных давлений  [c.33]

Остается только найти величину скорости и>ь, которую имеег рабочая струя в плоскости Ь (рис. 1.14). Для этого при дозвуковом истечении можно воспользоваться ура1внением Бернулли без учета гидравлических и тепловых потерь, ибо, как указывалось, участок струи, заключенный между плоскостями а. и Ь, мал.  [c.54]

Наиболее важно, что при дозвуковом режиме истечения давление в струе на срезе сопла р . практически равно давлению в окружающей среде рв, так как при этом режиме любое изменение давления в атмосфере в виде волны давления проникает внутрь сопла, вызывая изменение давления перед соплом и соответствующее изменение скорости истечения перестройка потока продолжается до тех пор, пока давление в струе на срезе сопла не сравняется с атмосферным. Поэтому в отлнчие от сверхзвукового сопла в простом коыфузоре скорость истечения определяется не его формой, а только давлением в камере перед кон-фузором. Таким образом, если известно давление в камере р, то при заданном давлении в плоскости выходного среза рв приведенная скорость истечения находится непосредственно по формуле (78) гл. I  [c.149]

Если бы в диффузоре потери отсутствовали, газ в любоом его сечении имел бы одно и то же полное давление, равное (при дозвуковых скоростях полета) полному давлению в набегающей струе воздуха. Наличие потерь нарушает это равенство, и полное давление в конце диффузора всегда ниже, чем в начале  [c.454]

Это выражение дает тем лучшее приближение к точному выражению (29), чем больше число скачков т в системе. При использовании многоскачковой системы интенсивность каждого скачка относительно невелика, а это означает, что скорость дозвукового течения за замыкающим прямым скачком близка к скорости звука (Мп 1). Но при этом достаточно небольшого сужения струи, обычно происходящего перед входным отверстием диффузора, для того чтобы в этом отверстии установилась кри-  [c.470]

Интересно отметить, что это различие в свойствах дозвуковой и сверхзвуковой струй можно наблюдать буквально на ощунь.  [c.499]

Эффективный метод исследования дозвуковых потоков с большими возмущениями был предложен акад. С. А. Ч а п л ы г и н ы м г работе О газовых струях , где приведены уравнения, составляющие математическую основу теории потенциальных дозвуковых течений. Уравнения Чаплыгина являются основой многих методов аэродинамики сжимаемых течений. Акад. С. А. Христианович на их основе разработал метод, позволяющий учитывать влияние сжимаемости на дозвуковое обтекание профилей различной формы. По этому методу сначала решается задача об обтекании некоторого фиктивного профиля фиктивным несжимаемым потоком, а затем полученные результаты пересчитываются для условий обтекания реальным сжимаемым потоком заданного профиля. Этот пересчет основан на использовании функциональной зависимости между истинной относительной скоростью /. = Via сжимаемого потока и значением фиктивной безразмерной скорости А в соответствующих точках заданного и фиктивного профилей.  [c.172]


Смотреть страницы где упоминается термин Струя, дозвуковая : [c.683]    [c.17]    [c.151]    [c.384]    [c.401]    [c.414]    [c.451]    [c.463]    [c.319]    [c.300]    [c.470]    [c.315]    [c.394]   
Физические основы ультразвуковой технологии (1970) -- [ c.11 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Акустические характеристики дозвуковых турбулентных струй

Визуализация течения в дозвуковой круглой струе при продольном и поперечном

Воздействие на дозвуковую струю интенсивных акустических возмущений

Дозвуковые турбулентные струи

Несимметричное обтекание бесконечного клина струей дозвуковой и звуковой скорости. Формула Прандтля — условие разрешимости задачи

О механизмах генерации шума дозвуковыми турбулентными струями

Струя

Управление акустическими характеристиками дозвуковых струй

Управление аэродинамическими характеристиками дозвуковых турбулентных струй

Численное моделирование дозвуковых турбулентных струй при их периодическом (акустическом) возбуждении



© 2025 Mash-xxl.info Реклама на сайте