Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экспериментальное определение аэродинамических характеристик крыла

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КРЫЛА  [c.229]

Уже в первых исследованиях ЦАГИ им уделялось большое внимание. Так, в исследованиях, проведенных в большой московской аэродинамической трубе в начале 30-х годов, были получены материалы по определению основных характеристик горизонтального оперения, влиянию фюзеляжа и крыла на поток в области горизонтального оперения (В. П. Горский). Затем эти исследования были продолжены в 1936 г. (Е. И. Колосов, А. К. Мартынов). Были даны приближенный метод и необходимый экспериментальный материал для подбора размеров горизонтального оперения и центровки.  [c.291]


Первое десятилетие XX в. характеризуется широким развитием экспериментальных исследований плоских и изогнутых пластинок в аэродинамических трубах и использованием полученных результатов для определения аэродинамических характеристик крыльев первых самолетов, совершивших успешные полеты. Создается ряд аэродинамических лабораторий и специализированных научных организаций на Западе Аэродинамический институт в Риме (Г. Финци и Н. Сольдати), аэродинамическая лаборатория при Национальной физической лаборатории в Англии (NPL) строится ряд аэродинамических труб в Германии, Канаде, США. Основное внимание при экспериментальных исследованиях и теоретических разработках в этот период уделяется подъемной силе крыла. В Англии, Италии, Канаде, Франции и США преобладал эмпирический путь в определении аэродинамических характеристик крыла. Наоборот, в России и несколько позже в Германии основное внимание обращали на теоретическое решение вопроса, при котором эксперимент играл вспомогательную роль [27].  [c.286]

Для учета влияния вязкости и отрыва потока при определении суммарных аэродинамических характеристик тела вращения (подъемной силы и момента) используются различные приближенные приемы, основанные в значительной мере на обработке и обобщении результатов эксперимента. При малых углах атаки изменение коэффициента подъемной силы тела вращения можно принять линейным. Для этого случая К. К. Федяевский (1938) получил формулу для определения подъемной силы, исходя из эмпирического распределения завихренности в кормовой части тела вращения, которое было предложено Т. Карманом. По этой формуле тела вращения с заостренной кормовой частью имеют подъемную силу, примерно в три раза меньшую, чем крылья малого удлинения той же формы в плане. При систематическом экспериментальном исследовании аэродинамических характеристик тел вращения различной формы, проводившихся Н. Н. Фоминой (1935), была выявлена существенная нелинейность при изменении коэффициентов подъемной силы и момента по углу атаки. Для приближенного определения аэродинамических коэффициедтов на участке их нелинейного изменения используется схема П-образного вихря, расположенного в кормовой части тела вращения, предложенная в работе  [c.91]

Существуют и другие подходы для определения критических параметров (в частности, скорости полета) на границе устойчивости. Для этого в уравнениях свободных колебаний (38) полагают Я, = ш и находят значения скорости, удовлетворяющие этим уравнениям. Критическую скорость флаттера можно также определить экспериментально в аэродинамической трубе на динамически подобной модели и в процессе летных испытаний летательного аппарата. В последнем случае прибегают к экстраполяции, чтобы по тенденции определяющих флаттер параметров с ростом скорости полета найти приближенно величину критической скорости флаттера. Возникновение флаттера связано с определенным тоном свободных упругих колебаний в потоке воздуха. Распределение деформаций по конструкции при потере устойчивости определяет комплексную форму колебаний флаттерного тона. В зависимости от преобладания амплитуд той или иной части ЛА и характера деформированного состояния различают виды флаттера. Например изгибно-крутильный флаттер крыла, изгибно-изгибный флаттер в системе стреловидное крыло — фюзеляж, изгибно-элеронный флаттер, рулевой флаттер и т. д. Для характеристик флаттера несущих поверхностей часто определяющее значение имеют различные грузы, размещенные иа них двигатели, подвесные баки с горючим, шасси. Существенными параметрами являются жесткости крепления этих тел на поверхности крыла. Вообще для флаттера принципиально важны параметры связаииости форм движения. Например, для совместных колебаний изгиба и кручения крыла такими параметрами являются координаты точек (линий) приложения сил аэродинамического давления, инерции и упругости. Смещение центра масс относительно оси жесткости вперед способствует стабилизации системы. Совмещение всех трех точек развязывает виды колебаний, и в этом случае флаттер невозможен. Это свойство обычно имеют в виду при динамической компоновке конструкции. Важными параметрами являются распределенные нли сосредоточенные жесткости. Последние характерны для органов управления  [c.490]



Смотреть главы в:

Прикладная аэродинамика  -> Экспериментальное определение аэродинамических характеристик крыла



ПОИСК



141 —149 — Определение характеристика

X характеристики аэродинамически

Аэродинамический шум

Крылов

Характеристики аэродинамического

Характеристики аэродинамического экспериментальные



© 2025 Mash-xxl.info Реклама на сайте