Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность деталей из деталей машин

Несущая способность деталей из материалов в пластичном состоянии. Несущая способность деталей из пластических материалов (конструкционные высоко-отпущенные стали) с удлинением при разрыве не менее 10%, обладающих способностью претерпевать перед разрушением значительные пластические деформации, как правило, определяется предельными нагрузками по перемещениям или, если величина перемещений на работе детали существенно не сказывается, — предельными нагрузками по деформациям. В соответствии с этим при обычных для деталей машин напряженных состояниях и условиях работы для деталей из пластических материалов нет необходимости определять запас прочности по разрушению.  [c.487]


Одним из резервов повышения ресурса при одновременном снижении материалоемкости машин и сооружений является повышение надежности обоснования расчетных характеристик с учетом указанного рассеяния, необходимых при проекти-ровании и доводке конструкций, что возможно лишь путем широкого внедрения в практику прогрессивных статистических методов планирования механических испытаний и оценки характеристик механических свойств конструкционных материалов, несущей способности и ресурса деталей машин и элементов конструкций.  [c.3]

Следует особо подчеркнуть статистическую природу всего явления. Здесь все зависит от плотности распределения начальных факторов, носящей случайный характер. С термодинамической точки зрения этому соответствует случайный характер распределения начальной плотности энтропии Sq. Это обстоятельство приводит к тому, что процесс усталостного разрушения носит ярко выраженный стохастический характер. Эксперименты показывают, что пределы длительной прочности при циклическом нагружении имеют значительный разброс. Это обстоятельство иллюстрируется на рис. 115, взятом из книги С. В. Серенсена и др. Несущая способность и расчеты деталей машин на прочность  [c.228]

Одна из задач теории упругости и теории пластичности — определение перемещений по заданным напряжениям. Возможна и обратная задача, когда по известным изменениям взаимного расположения частиц тела необходимо охарактеризовать его напряженное состояние. Решение подобных задач требует прежде всего установления физических закономерностей сопротивления тела всевозможным видам деформаций, т. е. выявления взаимосвязи между напряжениями и деформациями. От точности найденных закономерностей зависит достоверность инженерных расчетов на прочность, деформируемость и, следовательно, надежность оценки несущей способности деталей машин и сооружений, а также расчета тех или иных технологических операций. К сожалению, однозначное описание законов деформирования всех или хотя бы большинства физических сред оказывается практически невыполнимой задачей. Поэтому возникла необходимость в условном разделении этих сред на упругие и неупругие.  [c.39]

Концентрация нагрузки сильно снижает несущую способность деталей машин и часто является причиной выхода из строя. Эпюры давления резко неравномерны. Коэффициент концентрации нагрузки в витках резьбы достигает 3 нередко давление между контактирующими деталями распределяется не по всей длине, т. е. коэффициент концентрации больше 2.  [c.7]


В подвижных посадках, когда трущиеся поверхности деталей разделены слоем смазки (трение со смазкой) и непосредственно не контактируют, указанные погрешности приводят к неравномерности величины зазора в продольных и поперечных сечениях, что нарушает ламинарное течение смазки, повышает температуру и снижает несущую способность масляного слоя. При пуске, торможении, уменьшении скоростей, перегрузках машин и в других случаях условия для трения со смазкой не могут быть созданы, так как смазка не полностью разделяет трущиеся поверхности. В этом случае из-за отклонений формы, расположения и шероховатости поверхности контакт сопрягаемых поверхностей детален машин происходит по наибольшим вершинам неровностей поверхностей.  [c.141]

Несущая способность элементов конструкций по сопротивлению усталости при циклическом нагружении рассматривается в свете вероятностных представлений о возникновении разрушения и об уровне действующих переменных напряжений. При этом следует иметь в виду основные условия нагруженности изделий и их элементов. Многим из них свойственны стационарные режимы переменной напряженности, уровень которой в пределах большого парка однотипных конструкций и их деталей от изделия к изделию меняется, причем отклонение уровней носит случайный характер. Примером таких деталей являются лопатки стационарных турбомашин. Условия возбуждения колебаний этих деталей в однотипных машинах зависят от изменчивости условий газодинамического возбуждения и механического демпфирования, уровня частоты собственных колебаний и эффекта их связности в роторе с лопатками (что обычно является результатом технологических отклонений). Подобные условия имеют место и для многоопорных коленчатых валов стационарных поршневых машин при укладке их на не вполне соосные опоры, для шатунных болтов из-за неодинаковости их монтажной затяжки и т. д.  [c.165]

Предельные отклонения формы и расположения поверхностей должны назначаться только тогда, когда по условиям эксплуатации или изготовления деталей соединения величины отклонений формы и расположения должны быть меньше допуска на размер. Отклонения формы должны регламентироваться комплексными показателями, так как они, характеризуя совокупность встречающихся отклонений, позволяют наиболее полно ограничить отклонения формы и более обоснованно установить требования к точности формы исходя из эксплуатационного назначения детали. Исключения могут быть допущены лишь в тех случаях, когда по конструктивным или технологическим условиям требуется установление дифференцированных показателей отклонений формы, например, в подшипниках качения. Отклонение формы и расположения поверхностей уменьшает контактную жесткость стыковых поверхностей деталей машин и быстро изменяет установленный при сборке начальный характер подвижных посадок. В подвижных посадках деталей, работающих при жидкостном трении, когда между трущимися поверхностями находится слой смазки и они не имеют непосредственного контакта, указанные погрешности приводят к неравномерному зазору в продольных и поперечных сечениях, что нарушает ламинарное течение смазки, повышает температуру и снижает несущую способность масляного слоя.  [c.164]

Максимальные температуры цикла, для которых проводится указанная ниже оценка несущей способности, ограничиваются температурами до 450° С для деталей из аустенитных хромоникелевых сталей и температурами до 350° С для деталей из углеродистых и низколегированных сталей. При этих температурах деформации ползучести и длительные статические повреждения не учитываются. Настоящая методика по оценке несущей способности при циклическом нагружении не распространяется на те случаи работы конструкций и машин, когда возникают деформации ползучести.  [c.216]

В качестве базовых тягачей для малых моделей траншейных экскаваторов используют обычно гусеничные или колесные тракторы с необходимым переустройством. Тягачи средних и тяжелых моделей экскаваторов изготовляют преимущественно из тракторных узлов и деталей, сохраняя при этом принципиальную схему тракторного движителя, но по сравнению с базовыми тракторами уширяя колею и удлиняя базу. Вместе с широкими башмаками этим достигается уменьшение давления на грунт (50. .. 80 кПа), что позволяет этим машинам работать в грунтах с пониженной несущей способностью.  [c.231]


Вязкость характеризует внутреннее трение, т. е. сопротивление относительному смещению молекул жидкости. Чем больше вязкость, тем больше жидкостное трение в смазочном слое, но тем больше и сопротивление вытеснению масла из пространства между поверхностями скольжения, следователь о, тем больше несущая способность смазочного слоя. Поэтому при выборе масла для смазки деталей машины наиболее важным критерием является его вязкость, которая показывает, для какого удельного давления и для какой скорости относительного скольжения деталей машин подходит данное масло.  [c.656]

Резьбовые соединения являются наиболее распростра -ненными из разъемных соединений, применяемых в машиностроении. Основные преимущества резьбовых соединений высокая несущая способность и надежность, простота сборки, разборки и замены резьбовых деталей, малая стоимость, возможность применения однотипных стандартизованных деталей в различных машинах и механизмах. К недостаткам резьбовых соединений относится концентрация напряжений в резьбе, снижающая их прочность, особенно при циклических нагрузках.  [c.345]

Для посадок с гарантированным натягом наибольший функциональный допуск посадки (допуск натяга) 6Аф определяется исходя из прочности соединяемых деталей. Этот допуск должен делиться на три части. Первая часть допуска натяга, которую обозначим Абз.эк, должна обеспечивать запас прочности соединения при эксплуатации. Этот запас необходим в связи с возможным увеличением рабочих нагрузок, скоростей, ускорений, повышением рабочей температуры, ползучести, релаксации, а также возможными повторными разборками и сборками, которые могут происходить в процессе длительной эксплуатации машины и при которых изменяются сопрягаемые размеры и уменьшается несущая способность соединения.  [c.49]

В случае, когда рассчитываемый элемент машины состоит из многих деталей (цепи, канаты, сварные конструкции и т. д.) или его прочность лимитирует большое число расчетных сечений (крюки, проушины и др.), несущую способность элемента (детали) удобнее оценивать не по напряжениям, а по разрушающим и допускаемым рабочим нагрузкам [19, 56]. Такой подход облегчает выбор типовых элементов и деталей по заданным значениям рабочих нагрузок.  [c.62]

Вязкость является наиболее важным физическим (объемным) свойством масел, поскольку ее величина в первую очередь определяет возможность жидкостной смазки трущихся поверхностей. Таким образом, вязкость влияет на несущую способность масляного слоя в деталях машин и тем самым на смазочную способность масла и характеризует во многих отношениях поведение масел в эксплуатации это определяет ее значение как важнейшего из служебных свойств всякого смазочного масла.  [c.13]

Создание высокопроизводительных машин и скоростных транспортных средств, форсированных по мощностям, нагрузкам н другим рабочим характеристикам, неизбежно приводит к увеличению ннтенсивиостн и расширению спектра вибрационных и виброакустических полей. Этому способствует также широкое использование в промышленности и строительстве высокоэффективных вибрационных и виброударных процессов. Вредная вибрация нарушает планируемые конструктором законы движения машин, механизмов и систем управления, порождает неустойчивость процессов и может вызвать отказы и полную расстройку всей системы. Из-за вибрации увеличиваются динамические нагрузки в элементах конструкций, стыках и сопряжениях, снижается несущая способность деталей, инициируются трещины, возникают усталостные разрушения. Действие вибрации может приводить к трансформированию внутренней структуры материалов и поверхностных слоев, изме-йению условий трения и износа на контактных поверхностях деталей машин, нагреву конструкций.  [c.9]

Рассмотрим структуру вероятности безотказной работы элемента первой группы P t). Все факторы, влияющие на этот показатель надежности, могут быть разделены на две категории, К первой категории относятся нормальные эксплуатационные и производственно-технологические факторы (эксплуатационные нагрузки, напряжения, скорости и т. п., возникающие при нормальной работы машины). Несущая способность деталей имеет естественный разброс, соответствующий их качественному изготовлению. В результате взаимодействия этих факторов могут возникнуть отказы из-за разового превыщения нагрузкой несущей способности детали или накопления циклических повреждений, или изнашивания. Между этими видами отказов существует определенная зависимость 1) часто рассматривается один и тот же процесс нагружения, который может вызвать отказы трех типов 2) между характеристиками статической и циклической прочности существует вероятностная связь 3) изменения в детали, вызванные циклическими повреждениями или изнашиванием, могут повлиять на статическую прочность. Попытка учета этих связей приводит к чрезмерному усложнению расчетов, что делает их малоприемлемыми для практических целей [5]. В то же время, как показывает опыт расчетов, возможна оценка надежности деталей в предположении независимости вероятности безотказной работы по этим трем предельным состояниям.  [c.132]

Современные методы расчёта (см. гл. П — X зтого тома) отражают влияние динамичности нагрузок, формы и жёсткости деталей, типа напряжённого состояния, пластичности, усталости, ползучести и ряда других факторов на несущую способность, поддающихся расчётному или экспериментальпо.му определению. Ряд факторов не поддаётся таким определениям, и их влияние должпо быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплоатации и испытания машин. И. С. Стрелецким [47] и А. Р. Ржаницыным [21] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчётными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1- г,2- Щ, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции [31]. К одной группе факторов относятся а) разница в величине нагрузок, вводимых Б расчёт, и нагрузок действительных (определение последних в ряде случаев затруднительно, например, нагрузки, развиваемые при горячей и холодной обработке металлов, нагрузки на ходовую часть автомобилей, динамические усилия на лопатки турбин и т. д.) б) разница в величине уси-  [c.383]


Сомножители щ, щ. Лз отражают воз-.можные отклонения величин усилий, напряжений, характеристик прочности и других величин, от которых зависит несущая способность деталей и конструкций. При установлении приближённых величия запасов прочности для боль-нюй совокупности деталей различных конструкций, изготовляемых из различных материалов и работающих в различных условиях, эти отклонения характеризуются статистически, подчиняясь вероятностным закономерностям. Величинам общего коэфициента запаса п также свойственно вероятностное распределение, как результируюн1ее распределение произведения сомножителей 1, Лз, Яд. Величина п должна быть eньшe, чем произведение максимальных значений 1. и,, "з- Благодаря отсутствию в большинстве случаев данных о вероятностном распределении величин / 1, Яо, щ их значения намечаются на основании опыта конструирования, доводки и эксплоатации машин и узлов.  [c.384]

Понижение несущей способности деталей, набл1йдаемое для деталей из сталей при телшературах выше 300—400° С, а для деталей из легких сплавов и пластмасс — выше 100—150° С. Это связано с понижением основных механических характеристик материалов, в частности предела прочности и предела выносливости, с охрупчиванием — потерей пластичности во времени и, наконец, с явлением ползучести. Ползучесть, т. е. процесс малой непрерывной пластической деформации при длительном нагружении, становится основным критерием работоспособности для отдельных деталей машин лопаток и дисков турбин, элементов паровых котлов высокого давления и др. Ползучесть очень опасна в связи с возможностью выборки зазоров у вращающихся или поступа-тельно-перемещающихся деталей. Расчеты па ползучесть основываются па задании допустимых пластических перемещений за определенный срок службы.  [c.20]

Три уровня изучения поведения материалов. Для решения инженерных задач надежности необходимо знать закономерности изменения выходных параметров машины и ее элементов во времени. Так, надо оценить деформацию деталей, износ их поверхности, изменение несущей способности из-за релаксации напряжений или процессов усталости, повреждение поверхности из-за коррозии и т. д., т. е. рассмотреть макрокартину явлений, происходящих при эксплуатации машины. Однако для объяснения физической сущности происходящих явлений и для получения таких закономерностей, которые в наиболее общей форме отражают объективную действительность, необходимо также проникнуть в микромир явлений и объяснить первопричины взаимосвязей.  [c.59]

Научной основой теории расчета зубчатых и червячных передач и подшипников качения должна служить контактно-гидродинамическая теория смазки, зародившаяся в СССР. Работы в области этой теории позволили объяснить и численно обосновать ряд важнейших явлений контактной проч-ности деталей машин. Показано существенное повышение контактной прочности oпepeн aющиx поверхностей по сравнению с отстающими при качении со скольжением, связанное с резким изменением напряженного состояния в тонких поверхностных слоях от изменения направления сил трения в связи с пикой у эпюры давлений на выходе из контакта. Установлено численное значение (достигающее 1,5—2) коэффициента повышения несущей способности косозубых передач при значительном перепаде твердости шестерен и колес вследствие повышения контактной прочности опережающих поверхностей головок зубьев.  [c.68]

В отделе механики полимеров АН БССР выполнены исследования но нанесению полимерных покрытий и проведены стендовые и эксплуатационные испытания деталей машин с тонкослойными покрытиями из полимерных материалов созданы методы расчета зубчатых передач из полимерных материалов, теоретически и экспериментально оценена несущая способность металло-полимерных передач с учетом некоторых технологических, конструкционных и эксплуатационных факторов.  [c.216]

Современные методы расчета отражают влияние динамичности нагрузок, формы и жесткости деталей, типа напряженного состояния, пластичности, усталости, ползучести и других факторов на несущую способность, поддающихся расчетному или экспериментальному определению. Влияние факторов, не поддающихся таким определениям, должно быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплуатации и испытания машин. Н. С. Стрелецким [33] и А. Р. Ржанициным [28] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчетными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1П2П3, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции.  [c.536]

Под статическими нагрузками понимают нагрузки однократные или мало повторяющиеся, когда усталостное разрушение не успевает развиться. Такие нагрузки, наряду с нагрузками, могущими вызывать усталостное разрушение (обычно меньшими по уровню), действуют в большинстве деталей машин, поэтому расчет несущей способности детали должен складываться из расчета статической или повторностатической несущей способности и из расчета на выносливость.  [c.71]

Обязанности машиниста по соблюдению правил техники безопасности перед началом работы осмотр машины, проверка исправности тормозов, ознакомление с рабочей зоной на объекте и установка машины в ней в соответствии с проектом производства работ (технологической картой), проверка исправности грузозахватных приспособлений, ознакомление с опасными грузами и веществами. До начала установки машины в рабочей зоне машинист должен выяснить уклон и несущую способность площадки под выносные опоры или проходы. Площадка должна вьщерживать нагрузку от колес и выносных опор и находиться вне зоны случайного падения предметов с высоты. По пути следования к объекту и при передвижении в пределах рабочей зоны и фронта работ машинист должен включать муфту сцепления машины плавно, без рывков. Недовык-лючение и медленное включение приводит к повышенному трению в дисках муфты и преждевременному их износу, а резкое включение может привести к поломке деталей двигателя и аварии. При выходе из строя двигателя машинист должен принять экстренные меры для остановки машины.  [c.393]

Оптимальные режимы электромеханического упрочнения позволяют добиться не только требуемых параметров шероховатости, но и возможности получить закаленную структуру поверхностного слоя с повышенной износостойкостью, что обуславливается его высокой твердостью, прочностью и мелкозернистой структурой. Сжимаюшие остаточные напряжения в поверхностном слое от сил деформирования оказывают благоприятное влияние на различные виды разрушающих нагрузок в совокупности с повышенной пластичностью после ЭМО, что является одной из причин повышения контактной прочности поверхностного слоя. Кроме того, износостойкость повышается за счет образования после ЭМО большей несущей способности профиля, чем после механической и термической обработки, что уменьшает время приработки, а отсутствие прижогов и трещин наряду со снижением числа микронеровностей снижает число микроконцентраторов напряжения, что наряду с упрочнением поверхностных слоев повышает выносливость деталей на удар. Повышение износостойкости деталей машин, работающих в условиях трения скольжения, возможно также за счет электромеханической обработки при протекании электрического тока по импульсной схеме, благодаря чему на упрочняемой поверхности формируется специфическая текстура, представляющая собой чередование упрочненных и неупрочненных участков.  [c.360]



Смотреть страницы где упоминается термин Несущая способность деталей из деталей машин : [c.26]    [c.267]    [c.26]    [c.97]    [c.482]    [c.4]   
Справочник машиностроителя Том 3 (1951) -- [ c.332 , c.342 ]



ПОИСК



Несущая способность

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте