Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа координаты в теории возмущений

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]


Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]

Теория возмущений, методы которой от Лапласа и Лагранжа и до наших дней господствуют в исследованиях по небесной механике, исходит из разложений координат в ряды по степеням малых планетных масс. Как же обстоит дело со сходимостью этих разложений  [c.494]

Согласно первому процессу, я варьировал не начальные координаты системы, а лишь начальные компоненты ее скоростей, чтобы вычислить окончательную или возмущенную конфигурацию при помощи правил невозмущенного движения согласно второму процессу, я варьировал одновременно начальные положения и скорости, чтобы вычислить сразу же конечные или возмущенные координаты и скорости нескольких точек системы. Формула обоих процессов представляется мне такой простой, какой можно было ожидать, но при применении второго процесса к солнечной или другим аналогичным системам я принужден мысленно представить орбиту планеты совсем отличной от принятой в теории, хотя немного отличающейся в действительности от той, которую так прекрасно представил Лагранж. Моя орбита является менее простой с геометрической точки зрения, но зато взамен этого она имеет, возможно, некоторые важные преимущества для вычисления.  [c.768]


Мы можем затем выразить координаты Солнца (относительно С), входящие в Р. по формулам эллиптического движения через в,, е, и т. д., где вр в, и т. д.—постоянные. Отметим в этой связи различие между теорией Луны и теорией планет. В последнем случае координаты возмущающего тела подставляются в возмущающую функцию в виде алгебраических функций, представляющих решение уравнений невозмущенного движения, но в,, б, и т. д. являются уже не постоянными, а фактически новыми переменными, удовлетворяющими уравнениям Лагранжа. Это будет сказываться на членах второго порядка в возмущениях рассматриваемой планеты.  [c.132]

Тогда эти центробарические компоненты будут теми же функциями времени и новых переменных элементов, которые могли быть выведены иначе посредством исключения из интегралов (Q2). Они будут строго представлять (путем распространения теории на эти ранее упоминавшиеся интегралы) компоненты скорости возмущенной планеты т относительно центра тяжести всей солнечной системы. Мы предпочли (и это вполне соответствует общему направлению нашего метода), чтобы эти центробарические компоненты скорости были вспомогательньши переменньши, объединяемыми с гелиоцентрическими координатами. Их возмущенные эначения были в этом случае строго выражены формулами невозмущенного движения. Этот выбор сделал необходимым видоизменить эти последние формулы и определить орбиту, существенно отличающуюся теоретически (хотя мало отличающуюся практически) от орбиты, так блестяще разработанной Лагранжем. Орбита, которую он себе представлял, была более просто связана с гелиоцентрическим движением единственной планеты, следовательно, она давала для такого гелиоцентрического движения как скорость, так и положение (планеты). Орбита, которую мы избрали, быть может, более тесно связана с концепцией множественной системы, движущейся относительно ее общего центра тяжести и подверженной в каждой ее части влиянию со стороны всех остальных. Какая бы орбита ни была в будущем принята астрономами, следует помнить, что обе они одинаково пригодны для описания небесных явлений, если числовые злементы каждой системы будут соответствующим образом определены при наблюдениях, а элементы другой системы орбит будут выведены из результатов наблюдения в процессе вычисления. Тем временем математики решат пожертвовать ли частично простотой той геометрической концепции, исходя из которой выведены теории Лагранжа и Пуассона для простоты другого рода (которая хотя еще не введена, но была бы желательна для этих превосходных теорий), получаемой благодаря нашим достижениям в строгом выражении дифференциалов всех наших собственных новых переменных элементов через посредство единственной функции (поскольку до сих пор казалось необходимым употреблять одну функцию для Земли, возмущенной Венерой, и другую функцию для Венеры, возмущенной Землей).  [c.281]

С. В. Болотин указал интересное применение теоремы 2 в динамике твердого тела. Речь идет о возмущении приведенной задачи Лагранжа, рассматривавшейся в п. 2. Если постоянная площадей равна нулю, то характеристические числа неустойчивого равновесия оказываются вещественными, и поэтому теорема Деванея неприменима. В [29] показано, что если тензор инерции не шаровой, и центр масс тела несколько смещен относительно оси динамической симметрии (при этом его г-координата отлична от нуля), то возмущенная задача Лагранжа допускает не являющуюся главной трансверсальную гомоклинную траекторию к слабо нерезонансному положению равновесия. Для построения нужной траектории используются идеи теории возмущений (см. 1). Эта задача обсуждается также в работе [51].  [c.301]

Далее оказывается, что усредненная система имеет устойчивое положение равновесия, соответствующее движению всех планет в одной плоскости а одну сторону по круговым орбитам. Движение планет, соответствующее малым колебаниям в линеаризованной около этого равновесия усредненной системе, называется лагранжевым движением. Оно имеет простую геометрическую интерпретацию. Вектор, направленный из фокуса в перигелий планеты и имеющий длину, пропорциональную ее эксцентриситету (вектор Лапласа), в проекции на основную плоскость системы координат является суммой п—1 равномерно вращаюшлхся векторов. Набор угловых скоростей этих векторов одинаков для всех планет. Вектор, направленный по линии пересечения плоскости орбиты планеты с основной плоскостью (линии узлов) и пропорциональный по длине наклонению планеты, является суммой п—2 равномерно вращающихся векторов". Если в некоторый момент времени эксцентриситеты и наклонения достаточно малы, то в усредненной системе они останутся малыми и во все время движения. В частности, оказываются невозможными столкновения планет и уходы на бесконечность. Это утверждение называется теоремой Лагранжа — Лапласа об устойчивости Солнечной системы. С момента доказательства теоремы (1784 г.) центральная математическая задача небесной механики состояла в том, чтобы перенести этот вывод об устойчивости с усредненной системы на точную. На этом пути возникли многие разделы теории динамических систем, в том числе теория возмущений и эргодическая теория. Сейчас решение рассматриваемой задачи значительно продвинуто. Оказывается, при достаточно малых массах планет большая доля области фазового пространства, соответствующей не-зозмущенном движению в одну сторону по кеплеровским эллипсам малых эксцентриситетов и наклонений, заполнена условно-периодическими движениями, близкими к лагранжевым (см. 3). Таким образом, устойчивость имеет место для большинства начальных условий. При начальных условиях из исключительного множества эволюция больших полуосей если и происходит, то очень медленно — ее средняя скорость экспо-  [c.186]


Возвращаясь опять к случаю тесной двойной, сопровождаемой удаленной третьей звездой, нетрудно видеть, что элементы орбиты спутника относительно главной звезды будут изменяться. Поскольку возмущающая функция задачи оказывается малой, можно использовать уравнения Лагранжа для построения общей теории возмущений, дающей изменения (коротко-, длиннопериодные и вековые) элементов орбиты. Преимущественно используются разложения, применяемые в теории Луны, что становится понятным, если напомнить, насколько полезными оказываются координаты Якоби как в теории Луны, так и в задаче трех тел.  [c.468]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

С. А. Довбыш [51] применил теорему 1 к изучению возмущений интегрируемой задачи Лагранжа из динамики твердого тела. Выбирая подходящим образом единицы массы, длины и времени, можно считать, что главные моменты инерции тела относительно точки закрепления равны /1 = /2 = 1, /3, координаты центра масс относительно осей инерции суть О, О, 1, а вес тела равен единице. Пусть с — постоянная интеграла площадей.  [c.298]


Смотреть страницы где упоминается термин Лагранжа координаты в теории возмущений : [c.34]   
Теоретическая механика (1987) -- [ c.281 ]



ПОИСК



Возмущение

Возмущения по координате

Координаты Лагранжа

Координаты лагранжевы

Теория возмущений



© 2025 Mash-xxl.info Реклама на сайте