Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика неравновесная (необратимых процессов)

Существование у равновесной системы новой однозначной функции состояния — энтропии S—выражает второе начало термодинамики для равновесных процессов. Сформулируем теперь второе начало в применении к неравновесным, необратимым процессам.  [c.73]

Хемомеханическим эффектом нами названо [2] явление, представляющее собой изменение физикомеханических свойств и тонкой структуры (пластифицирование) тела под влиянием химических (электрохимических) реакций на его поверхности, вызывающих дополнительный поток дислокаций. Это явление было установлено и показано с привлечением методов неравновесно [ термодинамики, поскольку необратимые процессы механохимической коррозии связаны с возникновением энтропии в системе.  [c.117]


Принципиальная возможность переходов системы в состояния с меньшей вероятностью снимает противоречие между механикой с ее обратимым во времени движением и термодинамикой с необратимыми процессами. При длительном наблюдении (в пределе бесконечном) будут обнаружены самые маловероятные состояния. Например, газ соберется в одну половину сосуда. По идее М. Смолуховского, все зависит от размеров системы (числа частиц) и степени различия между равновесным состоянием системы и неравновесным. Пусть газ находился в начальный момент в левой половине сосуда. После этого открыли перегородку и он распространился по всему объему. В силу обратимости законов механики не исключена возможность, что движение частиц рано или поздно вернет систему в начальное состояние. Пусть среднее время между начальным моментом и моментом возвращения равно т. Если срок наблюдения / > т, то процесс расширения газа будем считать обратимым, если / < т, то процесс необратим.  [c.80]

Как известно, в работах, посвященных термодинамике произвольных необратимых процессов, в качестве основных параметров широко используются термодинамические параметры, для которых определения существуют только в случае равновесных состояний. При этом, однако, предполагается, что термодинамическим параметрам неравновесных процессов может быть придан определенный смысл методами статистической физики. Это позволяет их применять также и в феноменологических рассмотрениях. В связи с этим отметим, что по свидетельству Планка, даже Кирх-гофф хотел ограничить понятие энтропии обратимыми процессами. Твердая уверенность в общности этого понятия, которую Планк выразил уже в своей Диссертации, привела его в 1900 г. к закону излучения и К теории квантов [20].  [c.45]

Одно дополнительное замечание читатель, знакомый с учебниками по термодинамике, может припомнить чувство неудовлетворенности, возникающее при выводе уравнений, подобных уравнению (4-4.4), из-за некоторой расплывчатости соображений, касающихся обратимых и необратимых процессов, которые использовались где-то в ходе рассуждений. В последующем мы будем говорить о реальных процессах, которые являются необратимыми. Полученные соотношения относятся к области термодинамики необратимых процессов. Равновесные соотношения (или соотношения термостатики), а также соотношения линейной неравновесной термодинамики (типа соотношений Онзагера) можно получить как некоторые предельные случаи.  [c.149]


Неоднородные системы — неравновесные и в них всегда возможно возникновение необратимых процессов, таких, как теплопередача, диффузия и т. д. Такие системы рассматривает термодинамика необратимых систем, используя уравнения математической физики (Фурье, Фика и др.). Эта область термодинамики в настоящее время получила большое развитие благодаря широкому применению ЭВМ.  [c.252]

Неравновесная термодинамика является сравнительно молодым и интенсивно развивающимся разделом теоретической физики. Она возникла в результате обобщения классической термодинамики на область малых отклонений системы от равновесия, когда проявляется линейная связь между причиной и следствием того или иного необратимого процесса, как например пропорциональность теплового потока градиенту температуры при теплопроводности. Начало построения термодинамической теории линейных неравновесных процессов принадлежит Л. Онзагеру (1931). В настоящее время эта теория получила статистическое обоснование и широко используется при изучении различных физических явлений.  [c.7]

В условиях, когда допустимо представление о локальном равновесии (1.1), (1.2), можно построить последовательную феноменологическую термодинамику необратимых процессов. Состояние неравновесной системы при этом характеризуется локальными термодинамическими потенциалами, которые зависят от пространственных координат и времени только через характеристические термодинамические параметры, для которых справедливы уравнения термодинамики. Так, если в качестве характеристических переменных выбраны локальная плотность внутренней энергии е(г, (), удельный объем v(r, ) (и = р , р — локальная плотность массы среды) и локальные концентрации с,(г, t) различных компонентов, то состояние физически элементарного объема в окрестности точки г в момент времени t описывается локальной энтропией s = s[e г, t), и(г, ), (г, 1),. .., Ся(г, t), определяемой уравнением Гиббса  [c.8]

Основные законы и уравнения термодинамики необратимых процессов были установлены в результате обобщения классической термодинамики и закономерностей известных линейных процессов. Помимо такого индуктивного пути возможен и другой путь изложения термодинамики необратимых процессов, при котором ее уравнения дедуктивно получаются из некоторого общего принципа как для неравновесных процессов общего типа, так и для процессов некоторого ограниченного класса. В механике и электродинамике такой путь хорошо известен.  [c.16]

В настоящее время нет никаких оснований для проведения резкой грани между термодинамикой и статистической физикой тем не менее определенное преимущество термодинамики и особенность ее методов диктуют важность отдельного изложения термодинамики с привлечением необходимых качественных молекулярных представлений. Она позволяет с помощью своих начал легко учитывать наблюдаемые на опыте закономерности и получать из них фундаментальные следствия. Именно на этом пути в свое время было предсказано вырождение газов при низкой температуре, развита теория фазовых переходов второго рода, формируется термодинамическая теория кинетических явлений в физических системах неравновесная термодинамика или термодинамика необратимых процессов).  [c.10]

Термодинамика изучает закономерности теплового движения в равновесных системах и при переходе систем в равновесие (классическая, или равновесная, термодинамика), а также обобщает эти закономерности на неравновесные системы (неравновесная термодинамика, или термодинамика необратимых процессов).  [c.14]

В нашем курсе излагаются основы термодинамики необратимых процессов в обоих случаях неравновесных систем. Рассмотрим здесь исходные положения неравновесной термодинамики.  [c.255]

Книга представляет собой систематический курс термодинамики равновесных и неравновесных процессов, в котором рассматриваются как состояния равновесия и равновесные процессы изменения состояния тел, так и необратимые процессы, прежде всего процессы течения вязких жидкостей и теплообмена в различных условиях.  [c.2]


Термодинамический анализ неравновесных процессов составляет главную задачу и содержание термодинамики необратимых процессов. Этот анализ основывается на втором начале термодинамики кроме того, естественно, используются также первое начало термодинамики и законы сохранения вещества, заряда, количества движения. Рассматриваемые процессы предполагаются не очень сильно отклоняющимися от равновесных. Помимо этого принимается, что исследуемые термодинамические системы изотропны, а внешние силовые поля не меняются во времени эти последние предположения не являются существенными и вводятся в основном для упрощения.  [c.331]

Термодинамика необратимых процессов делает возможным феноменологическое рассмотрение неравновесных процессов такое рассмотрение, как известно, является наиболее общим и плодотворным. По этой причине приведенные выше основные уравнения для Уу и ф называют феноменологическими. соотношениями термодинамики необратимых процессов, равенство кинетических коэффициентов = уд,у составляет основную теорему термодинамики необратимых процессов.  [c.340]

Хотя второй закон термодинамики, сформулированный в середине XIX в., содержал принципиальную возможность приложения термодинамического подхода к описанию неравновесных процессов, основное применение термодинамики до недавнего времени ограничивалось исследованием равновесных свойств вещества. В последние десятилетия ведется интенсивное развитие неравновесной термодинамики, представляющей макроскопическую теорию необратимых процессов, протекающих в природе.  [c.3]

В восьмой главе изложены основы неравновесной термодинамики. Охарактеризованы особенности термодинамического описания неравновесных процессов. Рассмотрен вывод уравнений баланса для экстенсивных термодинамических переменных. Изложены положения линейного варианта термодинамики необратимых процессов и некоторые его приложения к описанию химических реакций, теплопереноса, диффузии и перекрестных неравновесных процессов в растворах неэлектролитов. Рассмотрены возможности определения коэффициентов активности компонентов на основе совокупности термодинамических и кинетических свойств.  [c.6]

Линейные феноменологические соотношения между термодинамическими силами и потоками. В термодинамике необратимых процессов (И. П. Базаров, 1983) применительно к системам с малыми неравновесностями используются следующие принципы.  [c.38]

Для необратимых процессов термодинамика позволяет получить систему неравенств, показывающих направление неравновесных процессов. Например, можно убедиться что для цикла, содержащего неравновесные процессы, инте рал Клаузиуса меньше нуля.  [c.44]

Уравнение (2.113) однородно по отношению к диссипативным потокам и диссипативным обобщенным силам. Оно справедливо только для состояний, близких к состоянию равновесия. Линейная связь потоков и обобщенных сил объясняет, почему теорию неравновесных состояний, принимающую в качестве исходного допущения это соотношение, называют линейной термодинамикой необратимых процессов.  [c.159]

Указанные уравнения составляют основные феноменологические соотношения термодинамики необратимых процессов. Они справедливы для неравновесных состояний, незначительно отличающихся от состояний равновесия. В термодинамике необратимых процессов используются линейные соотношения между диссипативными потоками и обобщенными диссипативными силами одной тензорной размерности изменение энтропии системы во времени аддитивно по отношению к каждой из обобщенных сил и равно сумме произведений обобщенных диссипативных сил на соответствующие обобщенные потоки.  [c.168]

В то же время основной задачей теории изнашивания является установление критериев, с помощью которых можно было бы предсказать скорость (или интенсивность) изнашивания, наступление предельного состояния поверхностных слоев, переходы от одного вида изнашивания к другому. Наиболее общим и перспективным в исследовании и описании процессов изнашивания является термодинамический подход, в основе которого лежат законы сохранения энергии и принцип увеличения энтропии при необратимых процессах (первое и второе начала термодинамики). Целесообразность такого подхода также объясняется тем, что в основе современных теорий прочности твердых тел и строения вещества лежат энергетические концепции, а процесс трения всегда сопровождается диссипацией энергии. При этом совокупность происходящих физико-химических процессов, обусловливающая изменение структуры материала, энтропии трибосистемы и ее изнашивание (разрушение), может быть описана с помощью законов неравновесной термодинамики и термодинамических критериев (энерге-  [c.111]

Популярный в последние годы эксергетический метод, даже по мнению одного из главных его пропагандистов, не дает результатов, отличных от тех, которые получают из классических термодинамических методов... На первый взгляд этот метод проще классического, однако он связан с многочисленными упрощающими предпосылками, которые могут повлиять на окончательный результат [77]. Методы неравновесной термодинамики , т. е. термодинамики необратимых процессов, разработаны пока для процессов, незначительно отличающихся от равновесных, а потому мало пригодны для целей настоящей работы. Метод энергомеханической оценки циклов [78] освещает лишь одну сторону эффективности только тепловых ПЭ. Поэтому обобщенные критерии энергетической эффективности будут основываться на принципах классической термодинамики.  [c.52]


Эти замечания показывают, что в настоящее время поставлена проблема создания общей теории неравновесных процессов. Термодинамика необратимых процессов и теория цепных процессов являются ее важнейшими разделами, находящими приложение в различных областях физики, химии и биологии. Появление новых исследований и монографий по этим разделам теории необратимых процессов представляет поэтому значительный интерес.  [c.13]

Кроме этих двух основных законов, важное, хотя и более ограниченное значение, имеют тепловая теорема третье начало термодинамики), определяющая чиатенное значение важнейшей термодинамической функции тела — энтропии — в состоянии равновесия при температуре абсолютного нуля, и условие взаимности, составляющее базу термодинамики неравновесных (необратимых) процессов.  [c.7]

Термодинамика неравновесная (необратимых процессов) 238 Течение газа в слое Кнудсена 320 и д. ---сдвиговое 252  [c.439]

В термодинамике стационарных необратимых процессов соотношения, полученные классической термодинамикой, обобщаются на неравновесные системы. Термодинамика необратимых процессов начала интенсивно развиваться начиная с 30-х годов, после известных работ Онзагера, и в настоящее время неравновесную термодинамику можно рассматривать как вполне сложившуюся физическую теорию. Однако неравновесной термодинамике свойственны Т1 же недостатки, что и всякой феноменологической теории, в которой не рассматриваются конкретные модели взаимодействия частиц — соотношения термодинамики необратимых процессов содержат некоторые величины (кинетические коэффициенты), нахождение которых связано с использованием либо кинетических уравнений, либо эксперим1Шта. Поэтому далее мы кратко изложим лишь основы классической термодинамики. Более подробно термодинамика изложена, например, в книге [6].  [c.30]

Если первичная энергия является работой любого вида, то с помощью идеального преобразователя, в котором отсутствуют неравновесные, необратимые процессы (трение, электрическое сопротивление, диффузия и тому подобные процессы диссипации), она может быть полностью преобразована в энергию любого иного вида. Максимальная 1еоретпческая эф41ективность преобразования работы в любую иную форму энергии (т. е. наибольший КПД преобразователя работы) равна единице. В реальных преобразователях имеются процессы диссипации, которые переводят часть энергии, подведенной в форме работы, в энергию хаотического теплового движения микрочастиц тел, участвующих в процессе преобразования, в связи с чем эффективность преобразования снижается. Такое снижение эффективности вызвано наличием необратимых процессов, поэтому для характеристики эффек-тивпостн преобразователей работы необходимо воспользоваться вторым законом термодинамики и следствиями из него.  [c.366]

Наиболее общие условия равновесия вытекают из утверждения второго закона термодинамики о росте энтропии адиабатически изолированной системы при протекании в ней необратимых процессов. Если некоторое состояние такой системы характеризуется максимальным значением энтропии, то это состояние не может быть неравновесным, так как иначе при релаксации энтропия системы согласно вто рому закону возрастала бы, что не согласуется с предположением о ее максимальности. Следовательно, усл01вие максимальности энтропии изолированной системы является достаточным условием ее равновесности.  [c.102]

И. Пригожин и И. Стенгерс [4] выделили три последовательных этапа в развитии термодинамики, связанные с областями, отвечающих равновесным, слаборавновесным и неравновесным процессам. В равновесной области производство энтропии, потоки I и силы X равны нулю. В слабо равновесной области (линейная термодинамика) потоки (I) линейно зависят от сил (X), а в сильнонеравновесной области эта зависимость сложная. Кроме того, все необратимые процессы сопровождаются производством энтропии.  [c.17]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

Квазитермодинамическая теория флуктуаций явилась основой развития термодинамики необратимых процессов. Она позволяет рассматривать флуктуации в системе как флуктуацию ее термодинамического состояния, т. е. как переход системы из равновесного состояния в неравновесное. Это неравновесное состояние системы представляется (как это мы делали в 26 при обсуждении термодинамической устойчивости) как новое равновесное ее состояние с большим числом параметров bi,..., bk и соответствующих им фиктивных сопряженных сил Ai,...,Ak, удерживающих систему в равновесии.  [c.298]

Из сказанного выше следует, что основной постулат термодинамики необратимых процессов заключается в следующем в неравновесной термодинамической системе имеют место линейные соотношения между обобсценными потоками и обобш,енными силами одной тензорной размерности-, из этих линейных соотношений составляется выражение для изменения энтропии системы во времени.  [c.340]

В учебном пособии изложены основы термодинамической теории многокомпонентных гомогенных н гетерогенных систем и ее приложения к растворам неэлектролитов. Рассмотрена термодинамическая теория идеальных, бесконечно разбавленных и неидеальных растворов. Даны основы термодинамической теории фазовых равновесий, коллнгативных свойств растворов, термодинамической теории устойчивости. Описаны теория флуктуаций, влияние флуктуаций на свойства растворов и их взаимосвязь с необратимыми процессами. Рассмотрены элементы термодинамики неравновесных процессов.  [c.2]

Дальнейшее обобщение и развитие энергетических концепций стали возможны на основе фундаментальных законов термодинамики. Трибосистема с позиций термодинамики необратимых процессов, как отмечалось выше, при определенных условиях является открытой термодинамической системой, обменивающейся энергией и веществом с окружающей средой. Известно, что в термодинамике неравновесных систем в отличие от равновесной термодинамики изучают изменения состояний, протекаюи ,ие с конечными, отличными от нуля скоростями. Предмет исследования - переносы массы, энергии, вызванные различными факторами, называемыми силами. Причиной возникновения потока всегда являются различия в значениях термодинамических сил температуры, давления и концентрации или их функции, т.е. перепады, или градиенты. Поэтому поток теплоты в трибосистеме появляется, если возникает градиент температуры, а поток вещества есть следствие наличия градиента концентрации и т.д. Следовательно, термодинамические силы представляют собой градиенты, характеризующие удаленность трибосистемы от термодинамического равновесия. Суть применения законов классической термодинамики к неравновесным системам заключается в предположении о локальном равновесии внутри малых элементов областей системы. Представление о локальном равновесии позволяет изучать больп1ое число практически важных неравновесных систем, к которым с полным основанием можно отнести и трибосистемы. При этом все уравнения сохраняют свою ценность по отношению к малым областям, а значит, и общность описываемых ими закономерностей. Так, уравнение Гиббса, показываюилее зависимость внутренней энергии U от энтропии S, объема и химических потен-  [c.107]


Рассмотрены фундаментальные проблемы, возникающие нрн применении второго лакона термодинамики к аналилу систем на макроскопическом и микроскопическом уровнях. Пока.чано, что неравновесность состояния системы может стать причиной возникновения в ней порядка и что необратимые процессы могут приводить к возникновению нового типа динамических состояний материи, названных диссипативными структурами . Кратко изложена термодинамика диссипативных структур. Дано определение необратимых процессов, в основе которого лежат свойства систем, проявляющиеся на микроскопическом уровне, и разработана теория преобразований, позволяющая ввести неунитарные уравнения движения, в явной форме обнаруживающие необратимость системы и ее приближение к термодинамическому равновесию. Дан краткий об.чор исследований, проведенных в данной области группой исследователей, работающих в Брюссельском университете. По мере развития теоретической химии и физики в данном направлении термодинамические концепции, по-видимому, будут играть в них все более важную роль.  [c.123]

Предлагаемая вниманию читателей мшопрафия посвящена аналитической теории тепло- и массопереноса в неподвижных средах и дисперсных системах. Для того чтобы решения системы дифференциальных уравнений тепло- и массопереноса могли быть использованы в других процессах переноса, все они даны в критериальных соотношениях с использованием методов теории подобия (теория обобщенных переменных). Таким образом, монография по сути дела является аналитической теорией термодинамики неравновесных состояний. Поскольку Л итера1тура по термодинамике необратимых процессов крайне бедна, то пер1вая глава монографии посвящена основным сведениям из термодинамики явлений тепло- и массопереноса.  [c.4]

В связ и с этими соображениями второй закон термодинамики, устанавливающий необратимость и одностороннюю направленность всех самопроизвольных процессов в йеравновесных системах может быть сформулирован так энтропия изолированной неравновесной системы стремится к максимуму, достигая его, когда самопроизвольные процессы, в ней прекращаются и система приходит в состояние равновесия.  [c.79]

Лит. Вопросы квантовой теории необратимых процессов, пер. с англ.. М., 1981 Тер.чодинамика необратимых процессов, пер. с англ.. М., 1962 Зубарев Д, Н.,Неравновесная статистическая термодинамика. М., 1971 Форстер Д., Гидродинамические флуктуации, нарушенная симметрия и корреляционные функции, пер. с англ.. М., 1980. Д. Н. Зубарев. ГРОМКОГОВОРИТЕЛЬ — электроакустический преобразователь (и-злучателЕ.) для громкого воспроизведения речи, музыки н т. п., преобразующий электрич. сигналы звуковой частоты в акустические. Наиб, совершенные образцы воспроизводят диапазон частот  [c.539]

НЕОБРАТИМЫЙ ПРОЦЕСС — физ. процесс, к-рый может самовроизвольно протекать только в одном определённом направлении. К Н. п. относятся диффузия, теплопроводность, вязкое течение, электропроводность и др. процессы, при к-рых происходит направленный пространственный перенос вещества, энергии, импульса или заряда. Релаксац, процессы и хим. реакции также являются Н. п. Все Н. п. неравновесные. Они изучаются с макроскопич. точки зрения в термодинамике неравновесных процессов, Классич. термодинамика устанавливает для них лишь неравенства, к-рые указывают их возможное направление. С микроскопия, точки зрения Н. п. изучаются в кинетике физической методами неравновесной статистик, механики. Систему, в к-рой произошли Н. П-, нельзя вернуть в исходное состояние без того, чтобы в окружающей среде не осталось к,-л. изменений. В замкнутых системах Н. п. всегда сопровождаются возрастанием энтропии, что является критерием Н. п. Согласно второму началу термодинамики, изменение энтропии б5 связано с переданным системе кол-вом теплоты 6Q при Н. п. неравенством 6Q < T6S, где Т — абс. темп-ра. Возрастание энтропии системы в результате Н. п. в единицу времени в единице объёма описывается локальным производством энтропии а. Для Н. и. всегда <т > 0. В открытых системах, к-рые могут обмениваться энергией или веществом с окружающей средой, при Н. п. энтропия системы, складывающаяся из полного производства её в системе и изменения из-за вытекания (или втекания) через поверхность системы, может оставаться постоянной или даже убывать. Однако во всех случаях производство энтропии в системе остаётся положительным.  [c.319]


Смотреть страницы где упоминается термин Термодинамика неравновесная (необратимых процессов) : [c.6]    [c.19]    [c.27]    [c.76]    [c.3]    [c.606]   
Динамика разреженного газа Кинетическая теория (1967) -- [ c.238 ]



ПОИСК



Необратимость

Процесс Термодинамика

Процесс неравновесный

Процессы необратимые

Термодинамика

Термодинамика необратимых процессов

Термодинамика неравновесная



© 2025 Mash-xxl.info Реклама на сайте