Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Давление релаксационное

Термическим уравнением состояния называют уравнение, связывающее давление с плотностью и температурой, а калорическим — уравнение, определяющее зависимость внутренней энергии (энтальпии) от температуры и давления. В большинстве случаев течения газа сопровождаются разного рода неравновесными процессами, для описания которых уравнения газовой динамики дополняются соответствующими кинетическими или релаксационными уравнениями. Кроме того, в уравнения вводят дополнительные члены, учитывающие воздействия неравновесных процессов на газодинамические параметры. Неравновесные процессы весьма разнообразны. Наиболее часто приходится иметь дело с неравновесным возбуждением колебательных степеней свободы, неравновесной диссоциацией и рекомбинацией, неравновесным движением жидких или твердых частиц в условиях неравновесной конденсации или испарения.  [c.32]


В баллистических экспериментах, выполненных в 50-е. гг., было обнаружено, что при движении моделей во фреонах в определенных условиях фронт головной ударной волны перестает быть гладким. На фронте головной ударной волны возникают многочисленные тройные конфигурации (пересечения в одной точке трех ударных волн). Картина течения становится такой же, как и за плоской ударной волной при наличии поперечных возмущений. В ряде случаев фронт волны остается гладким, а за ним возникает турбулентное течение. Сопротивление моделей существенно меняется. В дальнейшем были выполнены опыты в ударной трубе с инертными газами (аргон, криптон, ксенон) и с молекулярными (углекислый газ). Выяснилось, что распространение сильных ударных волн (при скорости несколько километров в секунду) имеет ряд особенностей. Фронт волны перестает быть плоским, в ряде случаев фронт разрушается, распределение плотности и концентрации электронов в релаксационной зоне имеет немонотонный характер (рис. 4.1, 4.2). Все эти особенности обнаруживают пороговый характер по скорости волны и начальному давлению. Малые примеси водорода (порядка 1%) оказывают стабилизирующее воздействие на течение. Описанное явление получило название релаксационной неустойчивости ударных волн. Существенную роль при этом, по-видимому, играет интенсивный переход энергии возбуждения в кинетическую.  [c.81]

Область металла вокруг водородных пор имеет повышенную плотность дислокаций. Все эти признаки отличают обнаруженные поры от пор ползучести, появление которых является релаксационным процессом и не вызывает деформацию окружающей пору матрицы. Появление деформированных объемов возле водородной поры является следствием молизации водорода и повышения его давления. Рост пор происходит вдоль границ зерен. Коалесценция выросших пор приводит к образованию микротрещин межкристаллитной коррозии.  [c.62]

Для случая распространения по исследуемому материалу ударного пластического фронта меньший путь волны разгрузки от тыльной поверхности образца, а следовательно, и меньшее время действия релаксационных процессов приводит к определяющему влиянию на условия нагружения этой волны. Однако и в этом случае использование экспериментально зарегистрированных максимума и минимума скорости свободной поверхности (давления на границе с мягким материалом) позволяет автоматически учесть влияние эффектов вязкости. Последнее основано на том, что скорость роста растягивающих напряжений является суммой скоростей изменения нагрузки во взаимодействующих волнах. В области роста растягивающей нагрузки скорость деформирования по экспериментальным результатам примерно постоянна, следовательно, линейный участок упругопластического деформирования материала сдвинут относитель-  [c.231]


Развитие теоретических исследований неравновесных газовых течений способствовало также появление быстродействующих вычислительных машин. Необходимость учета релаксационных явлений при расчете газовых течений обусловлена следующими причинами. В области высоких температур и давлений протекают различные химические реакции, процессы диссоциации, ионизации, возбуждения колебательных и электронных степеней свободы. Если времена этих процессов сравнимы с характерными временами макроскопических процессов, то происходит значительное отклонение от состояния термохимического равновесия, вызывающее в свою очередь существенное изменение картины течения. Нарушение локального термохимического равновесия при расширении диссоциированной смеси в ракетном сопле может привести к значительным потерям тяги. Недостаточно высокая скорость электронно-ионной рекомбинации в  [c.118]

При несовершенном упругом контактировании с ростом скорости коэффициент трения переходит через максимум и может иметь второй экстремум — минимум. Максимум коэффициента трения расположен в зоне скоростей, обеспечивающих наибольшее гистерезисные потери. При малых скоростях деформации релаксационные процессы сужают гистерезисную петлю, коэффициент трения снижается. При больших скоростях возникающая температура уменьшает адгезионное взаимодействие и гистерезисные потери вследствие сокращения времени релаксации. Вследствие этого снижается коэффициент трения. Дальнейшее повышение скорости скольжения приводит к новому повышению температуры трущихся материалов, снижению их твердости, росту внедрения и деформационной компоненты силы трения коэффициент трения вновь может возрастать. При сравнительно высоких давлениях, когда при малых скоростях возможно существенное повышение температуры, зона максимума коэффициента трения может отсутствовать.  [c.123]

Рйс. S. Диаграмма давление (/>)—объём (У) для ударной волны, распространяющейся по газу с замедленным (релаксационным) возбуждением части степеней свободы.  [c.209]

Причиной и движущей силой термодинамического процесса является разность температур, давлений, химических потенциалов компонентов и других термодинамических сил (см, 2) в разных точках внутри системы или на ее границах с внешней средой. Согласно определению квазистатического процесса допустимы лишь бесконечно малые изменения указанных интенсивных свойств на конечных расстояниях. Но рассмотренный выше критерий окончания релаксационного процесса (4.4) может служкть и критерием практической равновесности реального процесса. Из него следует, что скорость процесса, который ни по каким признакам неотличим от равновесного, может быть значительной, если в системе происходит быстрая релаксация по всем переменным. Например, при взрывах равновесие иногда достигается за стотысячные доли секунды, и модель квази-. статического процесса оказывается правдоподобной даже при значительной скорости изменения свойств системы.  [c.39]

На схеме рис. 1 процесс условно разделен на две стадии. На первой, неравновесной стадии в изолированной системе происходят химические реакции, в результате чего изменяется ее температура, химический состав и другие внутренние свойства, кроме внутренней энергии. Эта стадия — релаксация, химически неравновесного состояния. На схеме показано, что она не сопровождается теплообменом с внешней средой, т. е. теплотой в обычном понимании. Химическая реакция служит здесь внутренней причиной изменения температуры системы. Такой причиной может быть и любой другой нестатический процесс, например выравнивание давлений или концентраций веществ в разных частях системы. Во всех подобных случаях энергетический баланс релаксационного процесса можно выразить с псшощью внутренней теплоты Q. Определим эту величину как количество теплоты, которое потребуется ввести в изолированную систему  [c.49]


Особого внимания заслуживает возможность квазистатиче-ского перехода от неравновесного состояния к равновесному на одно равновесное состояиие системы приходится бесчисленное множество возможных неравновесных, поэтому вместо прямого экспериментального изучения релаксационного процесса значительно эффективнее определять экспериментально немногие термодинамические свойства равновесной системы и функции квазистатических процессов, а большое число функций неравновесных состояний и нестатических процессов рассчитывать теоретически, используя указанную возможность. На рис. 2 схематически показана так называемая (Р, Г)-диаграмма фазовых состояний одно1Компонентной системы, например воды. Кривые на такой диаграмме указывают условия (давление и температуру), при которых в равновесии между собой находятся попарно кристаллическая А , жидкая и газообразная  [c.73]

Ф И г. 49. К релаксационным эффектам, наблюдавшимся при установлении pan-ностп термомеханических давлений.  [c.829]

В процессах ударноволнового нагружения (во всяком случае, на начальном этане) при давлениях порядка 1 — 10 ГПа играют роль кинетические, или релаксационные эффекты перехода упругих деформаций в пластические, которые иногда называют эффектами запаздывания текучести. Процессы перехода упругих деформаций в пластические и обратно, вообще говоря, могут рассматриваться как фазовые переходы 2-го рода, когда в точке равновесия фаз (в данном случае в точке Гюгоиио па ударной адиабате) меняется сжимаемость или модуль сопротивления сдвигу, но пе величины внутренней энергии и плотности, как в случае фазовых переходов 1-го рода. Модели, учитывающие релаксацию во времени упругих деформации в пластические (в отличие от упругопластических схем типа (1.10.19)), должны включать дополнительные независимые параметры и дифференциальное уравнение кинетики релаксации упругих деформаций. Это  [c.148]

Указанный гравитационный эффект вызывает значительные трудности при проведении экспериментальных исследований теплофизических свойств вещества вблизи критической точки. Эти трудности усугубляются наличием еще одной особенности вещества, находящегося в К(ри-тическом состоянии, которая заключается в больщой длительности установления равновесия. Незначительные отклонения температуры и плотности от равновесных могут выравниваться сутками вследствие медленности релаксационных процессов в системе. К сказанному следует добавить, что резкое изменение свойств вблизи критической точки (удельного объема, энтальпии, теплоемкости) приводит к тому, что незначительные колебания давления и температуры, при которых проводится эксперимент, вызывают большие отклонения измеряемого свойства от истинной величины.  [c.94]

Превращение РезС- -Ре(С)+Срр [здесь Fe( ) — насыщенный раствор углерода в железе] сопровождается при атмосферном давлении увеличением объема и относительно небольшим уменьшением термодинамического потенциала системы. Образующийся при этом распаде цементита углерод оказывает давление на металлическую матрицу сплава," которое обусловлено отставанием релаксационных процессов в металлической матрице от скорости роста графитовых включений, В некоторых случаях происходит рост чугуна под действием внутреннего давления.  [c.33]

Высокая релаксационная стойкость никелевых сплавов при 650—750 °С [136] способствует длительному сохранению концентрации внутренних напряжений. В результате усиливается процесс зарождения роста микроповреждений, что в итоге понижает сопротивление макроразрушению и уменьшению доли вклада главного нормального напряжения (механизме разрушения при ползучести подтверждается особенностью разрыва трубчатых образцов никелевых сплавов под действием внутреннего давления.  [c.156]

Изменение величины коэффициента трения покоя. На фиг. 332 показано изменение величины коэффициента трения покоя по мере изменения давления для различных фрикционных материалов при трении по стальному шкиву, имеющему твердость поверхности трения ЯВ415. При опытах было установлено, что для большинства асбофрикционных материалов величина коэффициента трения покоя выше величины коэффициента тре-ния движения. Разница между величинами коэффициента трения покоя и коэф- 0,1 фициента трения движения при скорости 1—1,5 см/сек обычно составляла 5—10%, но иногда достигала 15—30%. Таким образом, величины тормозных статических моментов значительно превышают величины 0,5 расчетных тормозных моментов, подсчитанные по рекомендованным значениям (J l коэффициента трения движения. Переход от статического трения (коэффициент трения покоя) к трению кинетическому происходит обычно не плавно, а скачкообразно. Вследствие упругости контакта двух тел, скользящих одно относительно другого, возникают скачки при трении, объясняемые периодически повторяющимися процессами возникновения и последующего исчезновения упругих напряжений (релаксационные колебания). Эти скачки возникают только в том случае, если сила трения покоя превышает силу трения при установившемся движении.  [c.559]

Пружины из стали Х15Н27ТЗМ2Б и ХН77ТЮР при напряжениях 15 — 45 кГ/ мм после выдержки в среде N2O4 при температурах 770 — 820 К и давлении 50 бар на протяжении 1000 — 3000 ч показали высокую релаксационную стойкость. Поверхность пружин была покрыта тонкой сплошной окисной пленкой межкристаллит-ной коррозии и коррозионного растрескивания не выявлено.  [c.48]

Из-за снил<ения напряжений в шпильках уменьшается удельное давление на прокладку фланцевого соединения, и возникает опасность нарушения плотности. Чтобы избежать этого, шпильки после определенного срока работы подтягивают. После каждого последующего подтягивания релаксационная кривая идет более полого, и напряжения в шпильках снижаются не так быстро. Время до последующего подтягивания может быть значительно большим, чем до предыдущего. Чем выше рабочая температура, тем ниже релаксационная стойкость стали. Колебания температуры резко снижают релаксационную стойкость, и ее снижение зависит от марки стали, колебания температуры и продолжительности цикла. При расчете деталей, работающих в условиях релаксации напряжений при изменяющихся температурах, следует ориентироваться на верхнюю температуру цикла.  [c.218]


Отыскав решение задачи (8)—(10), используем его для вычисления и 2 и в дальнейшем для нахождения во втором приближении функции давления q (ф, т]) из системы (1) при известных Fi и F . В отличие от точного результата, полученное решение второго приближения не содержит зависящих явно от времени членов, характе-ризуюш,их релаксационные свойства потока смазки, вследствие чего оно пригодно для описания таких движений вала, которые мало отличаются от установившихся колебаний. Чем меньше е, тем, очевидно, выше точность, даваемая вторым приближением. Интегрируя уравнения (8) при условиях (9), находим  [c.110]

Построение теоргтических моделей, адекватных физической реальности, и создание инженерных методов расчета оборудования с учетом особенностей двухфазных течений невозможно без изучения волновой динамики газо- и парожидкостных сред. Особенности проявления волновых свойств зависят как от состояния и структуры самой среды, так и от амплитуды и частоты вносимых в нее возмущений. При этом предметом изучения становятся релаксационные и диссипативные процессы, происходящие в двухфазных средах при распространении в них волны возмущения. Времена протекания этих процессов, их взаимное влияние определяют эволюцию генерируемых волн в нестационарных условиях, скорость их распространения и интенсивность. Как показали многочисленные эксперименты, в газодинамике двухфазных потоков паро-(газо-) капельной структуры определяющим является обмен количеством движения между молекулами несущей газовой среды и каплями жидкости. При рассмотрении быстропротекающих процессов в смесях жидкости с пузырьками пара и газа определяющими являются инерционные свойства жидкости при внутренних радиальных ее движениях, возникающих в результате взаимодействия молекул газа в пузырьках с прилегающими к ним объемами жидкости При добавлении пузырьков газа мало меняется средняя плотность среды при достаточно малых концентрациях пузырьков, но характер изменения давления меняется существенно.  [c.32]

Истечение струй. Важным объекто.м исследований являются струи, истекающие в вакуум или область с низким давлением. Если истечение струи происходит из форкамеры с достаточно высоким давлением, то в струе теченпе может проходить все режимы от сплошной среды до свободномолекулярного. Вдоль струи темп-ра и плотность падают, а скорость увеличивается. В струях выражены релаксационные явления по  [c.623]

Пренебрежение указанными выше факторами частично компенсируется тем, что релаксационная стойкость шпилек (болтов), изготовленных из перлитной стали, как правило, при повторной затяжке несколько повышается. Кроме того, коцечное напряжение в шпильке (напряжение перед перезатяжкой) рассчитывают для условия, при котором давление по разъему с внутренней стороны равно нулю. Можно полагать, что плотность фланца начинает нарушаться с того момента, когда давление будет равно нулю на участке разъема от внутренней поверхности цилиндра до начала отверстий для шпилек. Таким образом, в расчете несколько завышается конечное напряжение в шпильках.  [c.380]

Пакет прикладных программ для расчета теплофизических свойств высокотемпературных рабочих тел [7]. Предназначен для расчета теплофизических свойств продуктов нагрева или сгорания, представляющих собой многокомпонентные смеси индивидуальных веществ в газообразном и конденсированном состояниях. Химический состав смеси либо задается, либо определяется в результате решения уравнений химического равновесия с помощью программ пакета. При разработке пакета принято, что термодинамическое состояние рабочего тела полностью определяется двумя параметрами (из рассмотрения исключены неравновесные релаксационные процессы). В качестве параметров выбраиы температура, плотность (удельный объем), давление, энтальпия, энтропия, внутренняя энергия, потенциалы Гиббса и Гельмгольца. Допустимы любые парные сочетания из этих параметров, из чего возникает 28 возможных сочетаний. Предусмотрена возможность генерации программ для расчета отдельных свойств. Пакет разработан на языке Фор-тран-IV применительно к ЭВМ серии ЕС.  [c.179]

Недавно К. К. Шальневым и С. П. Козыревым была выдвинута релаксационная гипотеза. механизма соударения малогабаритных объемов жидкости (капля, струя) с твердым телом (Л. 67]. Согласно этой гипотезе наличие пика давления (р) на осциллограмме р г), где т — время соударения, а также малое время нарастания этого пика (Ti) объясняются тем, что за период Tj капля (струя) упруго деформируется (происходит отрицательная релаксация), а за период Тг происходит падение напряження от сил вязкости (положительная релаксация). Импульс давления согласно данной гипотезе будет зависеть от ряда  [c.141]

Прочность полимерных, лакокрасочных и других пленок определяется свойством смачивания, т е. условием формирования площади контакта жидкий адгезив - подложка, образованием внлтренних напряжений и релаксационными процессами при затвердевании адгезива, а также влиянием внешних условий (давления, те.мперат ры, электрического по.ля и др.). Прочность клеевых соединений, кро.ме того, определяется когез1 ей отвердевшей клеевой прослойки.  [c.103]

Пример зависимости формирования DX-центров от некоторых из упомянутых условий — структуры кристалла, зарядового состояния примеси и внешнего гидростатического давления демонстрируют расчеты [63] примесей О, Si в вюртцитоподобной (в) и сфалеритоподобной (с) полиморфных модификациях A1N, GaN. Вычисления проведены в рамках теории функционала электронной плотности самосогласованным методом неэмпирического псевдопотенциала в моделях 32- и 72-атомных сверхячеек. На конфигурационной диаграмме (рис. 2.8) четко прослеживается образование глубокого DX-цент-ра при сдвиге атома кислорода в анионном состоянии (О ) вдоль направления [0001] в e-AlN. Корреляционная энергия DX-конфи-гураций, в соответствии с (2.1), рассчитывалась как U = Е + Е -- 2Е , где Е > — энергия образования дефекта в зарядовом состоянии q. Видно (см. табл. 2.4), что для О 1/ < 0 при значительном релаксационном смещении примеси, тогда как для нейтрального (и катионного) состояний дефектов дополнительные (метаста-бильные) минимумы Е > отсутствуют, и их наиболее устойчивой позицией является узел замещаемого элемента (азота). Любопытно, что для -A1N DX-состояний для примесного кислорода не возникает. Этот факт объясняют [63] различиями во взаимодействиях 0 с атомами матрицы, составляющими третью координационную сферу дефекта. В e-AlN третью сферу О" в направлении [0001] образуют атомы А1, рис. 2.9. Значительный релаксационный сдвиг 0 ( 0,9 А) уменьшает дистанцию О—А1 от 3,1 A (в нерелаксированной решетке) до -2,06 A, что лишь на -0,2 A больше равновесного состояния А1—О (1,89 А) в оксидах алюминия. Это указывает на причину формирования стабильного DX-центра в e-AlN как следствие образования сильной ковалентной связи А1—О. Наоборот, в -AlN ближайший атом А1 в  [c.48]

Ввиду снижения напряжений в шпильках уменьшается удельное давление на прокладку фланцевого соедияения и возникает опасность нарушения плотности. Чтобы избежать этого, шпильки после определенного времени подтягивают. После каждого последующего подтягивания релаксационная кривая идет все более полого, напряжения в шпильках снижаются не так быстро. Время до последующего подтягивания может быть значительно большим, чем до предыдущего. Для крепежных деталей, работающих при температуре не выше 550° С, получила распространение сталь 25Х2М1Ф.  [c.200]

Имеется очень мало данных о ползучести или релаксации напряжения при внешнем давлении, отличающемся от атмосферного. Однако довольно четко установлено, чего можно ожидать при уменьщении свободного объема и молекулярной или сегментальной подвижности под действием давления. Дефриз и Бэкман [79] установили, что давление в 3500 атм уменьшает податливость при ползучести ПЭ более чем в 10 раз. Наложение давления увеличивает релаксационный модуль во столько же раз. При повышенном давлении (2100 атм) напряжение продолжает релаксировать более длительное время по сравнению с давлением в 1 атм. Очевидно, давление смещает некоторые времена релаксации в сторону больших значений.  [c.65]



Смотреть страницы где упоминается термин Давление релаксационное : [c.76]    [c.830]    [c.831]    [c.134]    [c.296]    [c.97]    [c.97]    [c.246]    [c.77]    [c.45]    [c.48]    [c.176]    [c.557]    [c.329]    [c.211]    [c.192]    [c.217]    [c.225]    [c.18]    [c.141]    [c.161]    [c.460]   
Динамика разреженного газа Кинетическая теория (1967) -- [ c.192 ]



ПОИСК



С релаксационная



© 2025 Mash-xxl.info Реклама на сайте