Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волны течение энергии

При распространении электромагнитной волны происходит перенос (течение) энергии, подобно тому как это имеет место при распространении упругой волны. Вопрос о течении энергии в упругой волне был впервые (1874 г.) рассмотрен Н. А. Умовым ), который доказал общую теорему о потоке энергии в любой среде. Поток энергии в упругой волне может быть вычислен через величины, характеризующие потенциальную энергию упругой деформации и кинетическую энергию движения частиц упругой среды. Плотность потока энергии выражается с помощью специального вектора (вектор Умова). Аналогичное. рассмотрение плодотворно и для электромагнитных волн. До известной степени можно уподобить энергию электрического поля потенциальной энергии упругой деформации, а энергию магнитного поля — кинетической энергии движения частей деформированного тела. Так же как и в случае упругой деформации, передача энергии от точки к точке в электромагнитной волне связана с тем обстоятельством, что волны электрической и магнитной напряженностей находятся в одной фазе. Такая волна называется бегущей. Движение энергии в бегущей упругой или электро-магнитной  [c.37]


При распространении упругой волны распространяются волна скоростей, несущая с собой кинетическую энергию, и волна деформаций, несущая с собой потенциальную энергию. Происходит перенос энергии так же, как при распространении отдельного импульса. Течение энергии в определенном направлении происходит так же, как и в случае одного импульса. Деформированные элементы стержня движутся и при этом передают свою потенциальную и кинетическую энергию следующим элементам стержня. Энергия течет по стержню с той же скоростью, с какой распространяется волна. Но, как мы видели при движении сжатого упругого тела, энергия течет в направлении движения тела наоборот, при движении растянутого тела энергия течет в направлении, противоположном движению тела. Поэтому, хотя направление движения слоев стержня дважды изменяется за период, но вместе с тем меняется и знак деформации, так что энергия все время течет в направлении +х, т. е. в направлении распространения бегущей волны.  [c.680]

Так как энергия течет только в том случае, когда происходит движение деформированного тела, то ни через узлы смещений, где сечения стержня неподвижны, ни через узлы деформаций, где сечения стержня никогда не деформированы, не происходит течения энергии. Энергия, которой обладает участок стержня длиной в А./4, заключенный между узлом смещений и узлом деформаций, остается навсегда Б этом участке. Происходит лишь превращение заключенной в этом участке энергии из кинетической в потенциальную и обратно (скорость и деформация сдвинуты по фазе на я/2). Полный переход энергии из кинетической в потенциальную и обратно происходит дважды за период. В стоячей волне, в отличие от бегущей волны, не происходит течения энергии. Этого, впрочем, и следовало ожидать мы получили стоячую волну как результат сложения двух бегущих волн равной амплитуды, распространяющихся в противоположные стороны. Обе бегущие волны несут с собой одинаковую энергию в противоположных направлениях. Поэтому результирующая стоячая волна не переносит энергии.  [c.686]

Работа внешней силы идет на создание и поддержание энергии упругих колебаний стержня, т. е. потенциальной энергии упругой деформации и кинетической энергии движения элементов стержня, Так как колебания происходят во всем стержне, то энергия, возникающая на одном конце стержня за счет работы внешней силы, должна распространяться по стержню, чтобы поддерживать во всем стержне колебания, которые сопровождаются потерями энергии. Только предполагая, что при распространении и отражении волны потерь энергии не происходит, мы пришли к выводу, что падающая и отраженная волны имеют одинаковую амплитуду и несут с собой одинаковую энергию в противоположных направлениях в результате наложения этих двух волн энергия не должна течь по стержню, во всяком случае после того, как стоячая волна в стержне уже установилась (при установлении стоячей волны картина течения энергии получается более сложной, и мы не будем ее рассматривать).  [c.690]


Ясно, что на образование волн расходуется энергия кинетическая энергия тела отчасти превращается в энергию звуковых волн, и, следовательно, на тело действует суша сопротивления движению , которая называется силой волнового сопротивления. Колебания в звуковых волнах со временем ослабляются, так как волны с течением времени занимают все большую область пространства и затухают вследствие внутреннего трения в газе в конце концов хвост конуса рассеивается в пространстве.  [c.411]

При разделении энергии Eq на две части Е ш D нет необходимости определять энергию волны по отношению к состоянию полного термодинамического равновесия. Процесс перехода осуществляется через ряд неравноценных по времени этапов. Элемент среды, вовлеченный в движение взрывной волной, сравнительно быстро приходит в состояние механического равновесия, в котором его движение практически прекращается. Последующий процесс выравнивания температуры, которая оказалась различной в разных точках среды, происходит, однако, настолько медленно, что интенсивность излучаемых при этом волн ничтожно мала. Таким образом, естественно определять энергию волны по отношению к состоянию механического равновесия с неравномерным конечным распределением температуры. Более того, в некоторых случаях целесообразно определить энергию волны по отношению к состоянию определенного вида гидродинамического течения. Например, так отделяется энергия взрывной волны от энергии несжимаемого потока при взрыве в жидкостях. Другой пример такого течения представляет конвективное движение нагретого воздуха в поле тяжести при взрыве в атмосфере.  [c.294]

В случае связи на коротких волнах электромагнитная энергия доходит до пункта приёма по различным путям. Длины этих путей меняются с течением времени. В пункте приёма происходит интерференция полей.  [c.826]

Экспериментальные данные об энергии могут быть получены по испусканию или поглощению веществом излучения. Такие сведения о тепловом излучении и атомных спектрах накапливались в течение многих лет. Ранние попытки объяснить наблюдаемое тепловое излучение, применяя классические законы Ньютона к атомным системам, были только отчасти удовлетворительны. Например, в излучении абсолютно черного тела количество излученной энергии для коротких волн мало оно возрастает с увели-  [c.70]

Наличие разрывов (ударных волн) приводит, как было указано в 85, к диссипации энергии. Поэтому возникновение разрывов приводит к сильному затуханию волны. Наличие такого затухания видно уже непосредственно из рис. 80. При возникновении разрыва как бы отсекается наиболее высокая часть профиля волны. С течением времени, по мере продолжающегося выгибания профиля, его вышина все более уменьшается. Происходит сглаживание профиля с уменьшением его амплитуды, что и означает постепенное затухание волны.  [c.530]

Первым этапом, как сказано, явилось нахождение закона, устанавливающего зависимость суммарного или интегрального излучения (т. е. общего излучения всех длин волн) от температуры. Стефан (1879 г.) на основании собственных измерений, а также анализируя данные измерений других исследователей, пришел к заключению, что суммарная энергия, испускаемая с 1 см в течение 1 с, пропорциональна четвертой степени абсолютной температуры излучателя. Стефан формулировал свой закон для излучения любого тела, однако последующие измерения показали неправильность его выводов. В 1884 г. Больцман, основываясь на термодинамических соображениях и исходя из мысли о существовании давления лучистой энергии, пропорционального ее плотности, теоретически показал, что суммарное излучение абсолютно черного тела должно быть пропорционально четвертой степени температуры, т. е.  [c.695]

Совершенно так же, как и образование стоячих волн в стержне, происходит образование поперечных стоячих волн в струне. Если одному из концов натянутой струны сообщать колебательное движение в поперечном направлении, например, прикрепив его к ножке камертона (рис. 442), то по струне будет распространяться поперечная бегущая волна. От другого закрепленного конца струны она будет отражаться так же, как отражается продольная волна от конца стержня фаза волны смещения при отражении будет изменяться на п. Поэтому картина распределения узлов и пучностей по струне будет совершенно такая же, как и рассмотренная картина для стержня с закрепленными концами. Все сказанное выше справедливо и для струны, за исключением представлений о течении и распределении энергии эту картину, как указывалось, со стержня на струну распространять нельзя.  [c.686]


Математическое исследование течений с резким изменением параметров (например, в ударных волнах) с помощью дифферен-диальных уравнений ((12) и (26), (50)—для вязкого газа или (81), (83)—для идеального) оказывается затруднительным в связи с необходимостью выделения особых поверхностей (разрывов) и расчета изменения параметров на них по специальным -соотношениям. Эти трудности можно избежать, применяя интегральные уравнения, не содержащие производных от функций, характеризующих состояние среды. Для этого получим уравнения, выражающие законы сохранения массы, количества движения и энергии в интегральной форме.  [c.111]

Продукты сгорания топлива, двигаясь вдоль сопла 1 (рис. 4.3.2), отрываются от кольцевого уступа 3 и, повернувшись на некоторый угол в волне разрежения 2, присоединяются к поверхности насадки 7. В таком отрывном течении зарождаются хвостовой скачок уплотнения 8, застойная зона 6 с возвратным движением газа и участок смешения 5. Из-за необратимых потерь энергии в скачках уплотнения, на участке смешения и в застойной зоне тяговые характеристики сопл с кольцевыми уступами оказываются хуже, чем у обычных сопл. Однако эти характеристики могут быть улучшены путем вдува газа через отверстия 4 в уступе. На практике используют с л а бый и тангенциальный (интенсивный) вдувы. В первом случае газ попадает в насадок через перфорированную стенку уступа 3 (рис. 4.3.2) с малой скоростью и небольшими расходами. Во втором случае движение характеризуется большими скоростями и расходами газа, вдуваемого через свободное пространство в уступе (рис. 4.3.3). При интенсивном вдуве большие расходы газа приводят к значитель-  [c.318]

Работа выхода различна для различных металлов и составляет обычно несколько электрон-вольт. Например, красная граница фотоэффекта (в длинах волн) равна для калия, натрия и меди 551 543 и 277 нм, что соответствует работам выхода 2,25 2,28 и 4,48 эВ. Время запаздывания при фотоэффекте на основании изложенных представлений равно времени движения электронов до поверхности металла после столкновения с фотоном, т. е. чрезвычайно мало и находится в согласии с экспериментом. Если бы фотоэффект объяснялся постепенной раскачкой электронов электрическим полем волны, то время запаздывания было бы чрезвычайно большим. Для того чтобы преодолеть силы, удерживающие его в металле, электрон должен накопить энергию, равную работе выхода А. Если средняя плотность потока энергии световой волны <5), а эффективная площадь, на которой поглощается энергия световой волны, сообщаемая электрону, Сзф, то в течение времени At электрону сообщается энергия Д и, следовательно, время запаздывания равно А л А/(азф<5)). Эффективная площадь Сзф имеет порядок квадрата атомных размеров. Для условий эксперимента А и (S ) имеют такие значения, что время запаздывания оказывается чрезвычайно большим. Например, для А = 1 эВ азф=10-2°м = 10-3 Вт/м получаем Л/ 10" с.  [c.22]

Начало четвертого этапа характеризуется ситуацией, при которой давление у входа в трубу со стороны резервуара (р) больше, чем со стороны трубы р—Ар), жидкость из резервуара начнет втекать в трубу со скоростью и и давление в ней будет возрастать до р. При этом фронт первоначального давления х—х станет перемещаться в задвижке со скоростью распространения ударной волны. К концу этапа скорость во всей трубе равна и, а давление р. Но так как задвижка закрыта, то, начиная с конца четвертого этапа, процесс гидравлического удара начнет повторяться. При гидравлическом ударе часть энергии жидкости переходит в теплоту, поэтому с течением времени амплитуда колебаний давления Ар затухает и процесс приостанавливается.  [c.67]

В баллистических экспериментах, выполненных в 50-е. гг., было обнаружено, что при движении моделей во фреонах в определенных условиях фронт головной ударной волны перестает быть гладким. На фронте головной ударной волны возникают многочисленные тройные конфигурации (пересечения в одной точке трех ударных волн). Картина течения становится такой же, как и за плоской ударной волной при наличии поперечных возмущений. В ряде случаев фронт волны остается гладким, а за ним возникает турбулентное течение. Сопротивление моделей существенно меняется. В дальнейшем были выполнены опыты в ударной трубе с инертными газами (аргон, криптон, ксенон) и с молекулярными (углекислый газ). Выяснилось, что распространение сильных ударных волн (при скорости несколько километров в секунду) имеет ряд особенностей. Фронт волны перестает быть плоским, в ряде случаев фронт разрушается, распределение плотности и концентрации электронов в релаксационной зоне имеет немонотонный характер (рис. 4.1, 4.2). Все эти особенности обнаруживают пороговый характер по скорости волны и начальному давлению. Малые примеси водорода (порядка 1%) оказывают стабилизирующее воздействие на течение. Описанное явление получило название релаксационной неустойчивости ударных волн. Существенную роль при этом, по-видимому, играет интенсивный переход энергии возбуждения в кинетическую.  [c.81]

При гидравлическом ударе приращение давления, вызванное торможением потока, пропорционально его плотности, скорости распространения в нем звука и скорости течения до торможения. Эта формула была получена Н. Е. Жуковским и носит его имя. Рассмотрим теперь схему распространения фронта волны давления. Примем, что жидкость невязкая и распространение волны давления осуществляется без рассеивания механической энергии.  [c.365]


Теперь давление жидкости в трубе ро+Ар выше давления в резервуаре и жидкость начинает двигаться обратно в резервуар. Происходит упругое расширение массы жидкости в трубе. В течение времени о расширение сопровождается восстановлением в трубе начального давления ро- При этом фронт волны давления отступает в направлении запорного устройства, а скорость течения всей массы в трубе становится опять равной По, но теперь уже она направлена в сторону резервуара. Накопленная при торможении потока жидкости энергия упругого сжатия преобразуется опять в такой же запас кинетической энергии. Давление в жидкости становится равным начальному. Это значит, что масса жидкости в трубе обладает запасом внутренней энергии упругого сжатия (работа упругого сжатия от нуля до ра). Упругое расширение жидкости приводит к торможению потока, движущегося со скоростью По (равной начальной скорости течения в трубе) в сторону резервуара. Кинетическая энергия этого потока равна p Wvi 2. Из трубы обратно в резервуар может поступить только то же количество жидкости Аи , которое ранее поступило из резервуара в трубу. Работа упругих сил при торможении массы жидкости та же, что и при ее сжатии. Следовательно, в течение времени 1 = — [ с вся жидкость в трубе остановится и давление в ней станет ро—Давление в резервуаре теперь выше давления в трубе. Начнется поступление жидкости обратно в трубу со скоростью По с одновременным восстановлением давления ро. Когда фронт волны восстановления давления ро достигнет закрытого конца трубы, произойдет опять гидравлический удар. При измерении давления в жидкости непосредственно у закрытого конца трубы давление будет изменяться от Ро+Ар до ро—Ар. Период времени,  [c.366]

Далее Н. А. Умов рассматривает возможности использования энергии ветра, приливов и отливов, волн, внутреннего тепла Земли, солнечной энергии — весь набор источников энергии, который подается теперь некоторыми авторами как открытие новейшего времени. Он отмечает, что пользование мощностью приливов и отливов есть в сущности пользование энергией вращательного движения Земли около оси такое пользование вызвало бы замедление движения и удлинение дня. Но запас этой энергии так велик, что при ежегодном заимствовании из него в сто раз большего количества энергии, чем потребляемое в настоящее время на Земле, день уменьшился бы на одну секунду только в течение десяти тысяч лет .  [c.11]

Проблемы отыскания и использования соответствующих видов энергии всегда интересовали людей, однако столь волнующими, как сегодня, они не были никогда. Повышенный интерес к ним понятен. Мировое потребление энергии стало соизмеримым с запасами горючих ископаемых — базой современной энергетики. То, что природой создавалось на протяжении геологических эпох (миллионов лет), расходуется в течение нескольких десятилетий. Люди осознают во взаимодействии Человека с Природой происходит нечто очень серьезное, возможно, необратимое.  [c.4]

Следует подчеркнуть, что простой экспоненциальный закон нарастания электронной лавины с масштабом времени справедлив только при условии, что Те = onst. В реальных условиях электронная температура может сама зависеть от времени. Дело в том, что при кТд < / на ионизацию затрачивается очень большая доля тепловой энергии электронов грубо говоря, на рождение одного нового электрона тратится тепловая энергия 1/кТе электронов. Если нет источника, за счет которого восполнялись бы потери энергии электронного газа на ионизацию, электронная температура падает с течением времени, ехр (— I/kTg) резко уменьшается, развитие лавины затухает. Во фронте ударной волны потери энергии электронов восполняются за счет притока энергии от атомов (ионов) к электронам. Подробнее см. об этом 10 гл. VII.  [c.330]

Хотя доводы, основанные на интерференции групп, кажутся удовлетворительными, желательно независимое исследование соотношения между наличной энергией волны и энергией распространяющейся. В течение некоторого времени я не находил метода, применимого ко всем видам волн, не видя, в частности, причины, почему сравнение энергий должно приводить к рассмотрению изменения длины волны. Нижепроводимое рассуждение, в котором увеличение длины волны мнимое, быть может, удовлетворит этой потребности.  [c.497]

В случйе зонального течения, когда, скажем, вектор кг лежит на оси I, из указанных диаграмм следует, что либо к1 и кз также лежат на оси I (а это приводит к обращению Ь в нуль, 6 = О, и тогда переноса энергии нет), либо концы векторов к й кз лежат на равных расстояниях от О, так что ул = хз. В последнем случае Сг равно нулю, но С и Сз, вообще говоря, нулю не равны. Из (6.8) мы видим тогда, что 2 = 0 можно сказать, что зональное течение не приобретает и не теряет энергии во взаимодействии с двумя другими компонентами. Однако при 2 0 уравнения (6.8) показывают, что как аи так и аз будут соверщать гармонические колебания около нулевых средних значений. В этом случае зональное течение действует как своего рода катализатор, который позволяет двум другим волнам обмениваться энергией.  [c.178]

Третий варинт источника литания для ускорителя бегущей волны - это генератор переменного тока (рис. 4.18). В отличие от гомополярного генератора он обеспечивает короткие по времени импульсы высокого напряжения, например, 10 кВ в течение 5000 мкс, что особенно удобно для питания ускорителя бегущей волны. Плотность энергии, запасаемой в генераторе переменного тока, может достигать 1 МДя м или 100 Дж/кг [48],  [c.183]

Особенно интересны безразмерные числовые постоянные. В гидродинамике мы встречаемся с безразмерным числом, называемым числом Рейнольдса. Когда число Рейнольдса велико, то наблюдается турбулентное течение жидкости когда оно мало, течение является нетурбулентным, т. е. ламинарным. В атомной физике мы можем получить важную безразмерную числовую постоянную, комбинируя величины е, h ч с. Величина h — это постоянная Планка мы предпочитаем оперировать с h = h/2n. Постоянная Планка определяется из соотношения E = hv для световых волн она выражает связь между частотой V и энергией Е фотона. Следовательно, h (и Н) имеет размерность [энергия время]. Мы знаем, что е До имеет раз-  [c.276]

С течением времени энергия волны падает по закону Е = = onst что касается амплитуды волны, то, поскольку  [c.135]

По отношению к резонансным частицам движение в волне стационарно поэтому обмен энергией меиаду ними и волной не обращается в нуль при усреднении по времени (как это имеет место для других яастии, по отношению к которым движение в волне осциллирует). Отметим также, что указанное направление обмена энергией отвечает стремлению к уменьшению градиента скорости течения, и в этом смысле отвечает учету сколь угодно малой вязкости.  [c.243]

Предположим, что излучающее тело окружено идеально отражающей, непроницаемой для излучения оболочкой. Тогда излучение, испускаемое телом, не рассеивается по всему пространству, а, отражаясь спота стенками, сохраняется в пределах полости, падая вновь на излучающее тело и в большей или меньшей степени вновь им поглощаясь. В таких условиях никакой потери энергии наша система — излучающее тело и излучение — не испытывают. Однако это еще не значит, что испускающее тело и излучение находятся в равновесии между собой. Энергия нашей системы содержится частично в виде энергии излучения (электромагнитных волн), частично в виде внутренней энергии излучающего тела. Состояние системы будет равновесным, если с течением времени раепределение энергии между телом и излучением не меняется. Поместим внутрь полости нагретое тело (твердое, жидкое или газообразное — безразлично). Если в единицу времени тело больше испускает, чем поглощает (или наоборот), то температура его будет понижаться (или повышаться). При этом будет ослабляться или  [c.683]


Атом, поглотивший свет, остается в возбужденном состоянии в течение некоторого времени. При помощи различных методов исследования удалось определить это время. Оно различно для каждого состояния данного атома и, конечно, различно для разных атомов. В общем, <время это равно приблизительно 10 с (иногда несколько больше). Отдельные состояния характеризуются столь большой устойчивостью, что атомы могут оставаться в них гораздо дольше, пока какое-нибудь внешнее воздействие не заставит их выйти из этого состояния. Такие состояния носят название метастабиль-ных как правило, они не имеют значения для излучения света, ибо выход из них, сопровождающийся излучением, совершается сравнительно редко. Однако косвенно они играют важную роль, способствуя накоплению атомов в таких промежуточных состояниях и делая возможным поглощение тех длин волн, которые отвечают переводу атома в состояния с еще большей энергией. Таким образом, удается наблюдать поглощение линий, соответствующих переходу между различными состояниями атома, более высокими, чем основное. Разнообразнейщие опыты показали, например.  [c.728]

Допустим, что в полость, окруженную оболочкой с идеально отражающими стенками, помещено тело. Излучение, иепускаемое телом, не рассеивается по всему пространству, а, отражаясь от стенок, сохраняется в полости, падая вновь на тело и частично поглощаясь в нем. В таких условиях никакой потери энергии в системе тело — излучение не происходит. Однако это еще не означает, что тело и излучение находятся в равновесии между собой. Энергия такой системы содержится частично в виде энергии излучения, т. е. электромагнитных волн, а частично — в виде внутренней энергии тела. Состояние системы будет равновесным, если с течением времени распределение энергии между телом и излучением не меняется. Поместим внутрь полости нагретое тело (твердое, жидкое или газообразное). Если в единицу времени тело испускает больше, чем поглощает (или наоборот), то температура его понижается (или повышается). При этом испускание  [c.130]

На практике в ударной трубе за счет немгновенного разрушения диафрагмы плоская ударная волна образуется на расстоянии 40—50 калибров от диафрагмы. Скорость ударной волны вдоль трубы в начале возрастает, затем на некотором участке скорость волны приблизительно постоянна, после чего она падает. При этом для сильных волн при заданном перепаде давлений на диафрагме максимальная скорость ударной волны оказывается несколько выше значения, рассчитанного по формуле (3.23). Протяженность области равномерного течения приблизительно в два раза меньше своего расчетного значения за счет влияния диссипации энергии.  [c.71]

Расширение продуктов взрыва в воде будет происходить более медленно, чем в воздухе, из-за большей сопротивляемости воды на сжатие. Поле течения за взрывной ударной волной в воде также существенно отличается от волны в воздухе, так как из-за малой сжимаемости ее температура увеличивается значительно меньше, что приводит к небольшому росту энтропии. Поэтому энергия ударной волны будет тратиться на перемещение волны, а не на йагрев среды. Распределение параметров за фронтом ударной волны также имеет большое отличие  [c.126]

Предельным случаем оптической модели является модель черного тела, согласно которой ядро поглощает все попавшие на него частицы. Для нейтронов упругое рассеяние в модели черного тела является чисто дифракционным (см. гл. II, 6 и 3, п. 3 этой главы), а сечение поглощения с ростом энергии плавно приближается к предельному значению (см. пунктир на рис. 2.16). Реальные параметры оптического гамильтониана (4.М) свидетельствуют о том, что ядро является полупрозрачным. Полупрозрачность ядра подтверждается также осцилляциями сечений поглощения (рис. 2.16) в зависимости от энергии. Эти осцилляции в оптической модели возникают вследствие интерференции налетающей и рассеянной ядром волн. Осцилляции сечений поглощения можно также наблюдать, сохраняя энергию неизменной, но меняя размеры ядра, т. е. изучая зависимость сечения поглощения от массового числа А. Полупрозрачность ядра означает, что влетевший в ядро нуклон не сразу образует составное ядро, а в течение некоторого времени, большего R/v, где v — скорость частицы в ядре, двигается, сохраняя некоторую обособленность от остальных нуклонов ядра. Этот факт является важным для предравновесного механизма ядерных реакций (см. 8, п. 3).  [c.151]

Изучение природы скачков давления представляет большой практический интерес. Различают прямые н косые скачки уплотнения. В и р я м о м скачке уплотнения угол между плоскостью ударной волны н направлением скорости газа до н после скачка прямой в к о с о м скачке у п л о т н е н и я этот угол отличается от прямого. Сжатие газа в скачке является процессом необратимым, протекающим с возрастанием энтропии, что всегда приводит к необратимым потерям энергии. Поэтому при проектировании реактивных двигателей, сверхзвуковых дис1зфузоров, газовых турбин и сверхзвуковых летательных аппаратов необходимо уметь определять состояние газа при течении сквозь скачок уплотнения.  [c.245]

Процесс пластического течения в кристалле осуществляется эстафетным механизмом в результате возникновения механического поля вихревой природы. Механическое поле в кристалле распространяется в виде волн смещений и поворотов. Поэтому в кристалле в любые, произвольно выбранные моменты времени могут существовать места разрядки, где полностью прошла релаксация напряжений от внешнего источника, и места с наиболее ярко протекающими процессами пластической деформации. Там, где сдвиг заторможен, и там, где активно реализуется деформация, возникает эффект взаимодействия зон с разным градиентом накопленных дефектов. Это приводит к возникновению мод вращения объемов материала и фрагментированию кристалла на малые объемы. Границы возникающих областей служат зонами заторможенного сдвига, где возникает наибольшая плотность дефектов. В этих областях происходит самоорганизованный процесс аккомодации энергии из условия сохранения сплошности. Эстафетное распространение деформации характеризуется тем, что любой сдвиг сопровождается эффектом поворота.  [c.143]

Течения и волнения в Мировом океане велики и чрезвычайно разнообразны. Скорости течений достигают высоких значений, например у Гольфстрима 2,57 м/с (9,2 км/ч) при глубине 700 м и ширине 30 км. Правда, чаш,е они не превышают нескольких сантиметров в секунду. Максимальные параметры волнений высота волн — 15 м, длина — 800 м, скорость — 38 м/с, период — 23 с. В толш е вод возникают и внутренние волны, обнаруженные впервые Ф. Нансеном в 1902 г., амплитуда их колеблется от 35 до 200 м. При амплитуде волны в 1 м, ширине 5 м и скорости распространения 10 м/с мощность волны составляет 267 кВт [67]. Отсюда ясно, как велики запасы энергии в этом, неучитываемом обычно ИЭ.  [c.109]


Смотреть страницы где упоминается термин Волны течение энергии : [c.115]    [c.682]    [c.690]    [c.260]    [c.201]    [c.62]    [c.370]    [c.175]    [c.129]    [c.343]    [c.396]    [c.199]    [c.8]   
Физические основы механики (1971) -- [ c.680 , c.686 ]



ПОИСК



Энергия в волне

Энергия волн безвихревого течения



© 2025 Mash-xxl.info Реклама на сайте