Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связи тройные

Формула Ретроградского устанавливает связь тройного интеграла по пространственной области /тело/ с поверхностным интегралом по границе этой области.  [c.16]

Двойная углеродная связь Тройная углеродная связь 1,733 2,398 Нитрильный . ... 3,118  [c.681]

Для упрощения чтения схем допускается перемещать элементы механизма за пределы его контура и поворачивать элементы вместе с валом (см. рис. 12.7). При переносе сопряженные элементы соединяют штриховой линией 12. Если связь проходит через некинематические (энергетические) участки, проводят двойную штриховую линию, а для указания расчетной связи — тройную.  [c.402]


Величина ковалентного радиуса определяется кратностью ковалентной связи. Тройная связь короче двойной, которая в свою очередь короче единичной, поэтому ковалентный радиус тройной связи меньше, чем ковалентный радиус двойной связи, который меньше  [c.53]

Длина связи или расстояние между атомами определяется в первую очередь размерами атомов, соединенных связью. Вообще, чем больше атомы, тем больше длина связи. Для настоящей цели кажущийся радиус может быть принят для отдельного атома таким, чтобы сумма кажущихся радиусов атомов была равна длине связи. На длину связи в некоторой степени также влияет прочность связи чем прочнее связь, тем короче длина. Поэтому кажущийся атомный радиус будет изменяться с типом связи например, кажущийся атомный радиус углерода для одинарной ковалентной связи равен 0,77 А, для двойной связи он понижается до 0,67 А и для тройной связи до 0,60 А.  [c.137]

Причина различной скоростной зависимости критических параметров при внутри- и межзеренном разрушении заключается в разной природе физических процессов, приводящих к накоплению меж- и внутризеренных повреждений. Как уже отмечалось, межзеренное разрушение в рассматриваемых условиях связано с зарождением, ростом и объединением пор по границам зерен. Следует подчеркнуть, что во многих работах [199, 256] разрушение по границам зерен связывается с ростом микротрещин, зародившихся в стыках трех зерен. Однако выполненные в последнее время фрактографические исследования [256] достаточно убедительно показали, что указанные механизмы не являются альтернативными в обоих случаях процесс развития повреждений является кавитационным [256, 326]. Более легкое зарождение пор в тройных стыках приводит к неоднородному развитию повреждений и формированию клиновидных микротрещин, которые в процессе роста поглощают мелкие поры, зарождающиеся по всей поверхности границ зерен [256]. Таким образом, указанная дифференциация межзеренных повреждений является достаточна условной и при описании процессов накопления повреждений на границах зерен целесообразно исходить из моделирования их кавитационными механизмами.  [c.154]

Графика на рис. 5.15 видно, как показания одной из конструкций термометра зависят от глубины погружения в ампулу тройной точки воды. Зависимость показаний от глубины погружения по-разному сказывается у разных типов термометров и, как и следовало ожидать, связана, в частности, с тем, насколько  [c.212]


Кинематические схемы выполняются в соответствии с требованиями ГОСТ 2.703—68 (СТ СЭВ 1187—78). На этих схемах изображают сплошными основными линиями толщиной 2з — валы, оси, стержни, шатуны, кривошипы и т. п. сплошными тонкими линиями толщиной 5/2 — элементы, изображенные упрощенно в виде контурных очертаний, зубчатые колеса, червяки, звездочки, шкивы, кулачки и т. п. сплошными тонкими линиями толщиной 5/3 — контур изделия, в который вписана схема штриховыми линиями толщиной 5/2— кинематические связи между сопряженными звеньями пары, вычерченными раздельно двойными штриховыми и линиями толщиной 5/2 — кинематические связи между элементами или между ними и источником движения через немеханические (энергетические) участки тройными штриховыми линиями толщиной 5/2 — расчетные связи между элементами.  [c.173]

Вычисления уравнения состояния, проведенные для аргона методом молекулярной динамики, показали хорошее совпадение с экспериментом практически для любых плотностей вплоть до тройной точки. Вместе с тем при увеличении плотности согласие с экспериментальными данными ухудшается. Обычно это рассматривается как указание на существенность вклада многочастичных взаимодействий. Для эффективного их учета считают двухчастичный потенциал зависящим от плотности. В связи с этим встает вопрос о правомерности использования двухчастичного потенциала для описания взаимодействия в реальной системе многих частиц. В ряде работ было показано, что даже не зависящий от плотности двухчастичный потенциал является эффективным, учитывающим многочастичные взаимодействия. Действительно, например, параметры потенциала Леннард—Джонса определяются на основе тех или иных экспериментальных данных, которые отражают все взаимодействия, существующие в системе, а поэтому и эти параметры эффективно зависят от всех видов взаимодействий в системе. График истинного (двухчастичного) потенциала взаимодействия будет несколько глубже используемого на практике потенциала Леннард—Джонса >.  [c.206]

Пусть в системе т — число лишних связей п — число контуров pj—число двойных шарниров Рз—число тройных шарниров . .. р — число шарниров, в которых сходятся ( элементов р — число Катковых связей.  [c.242]

Область газообразного состояния ограничена нижним участком линии фазового равновесия и вертикалью, проведенной через точку оси температур, соответствующей температуре ионизации T . Справа от этой вертикали находится область плазмы. Область жидкого состояния заключена между участками от точки А кривых фазового равновесия и вертикалью, проведенной через точку Т = = Т . Нижняя часть участка AM соответствует равновесию кристаллической и жидкой, а далее — кристаллической и газообразной фаз верхняя часть этого участка соответствует равновесию кристалла и плазмы. Характерные температурные точки — температура тройной точки Ттр, критическая температура и температура ионизации Ти определяются энергией связи структурных частиц вещества  [c.219]

Изложены результаты исследования термодинамических свойств неорганических материалов — энергии Гиббса, энтальпии и энтропии образования соединении ванадия, хрома и марганца с р-элементами и закономерности их изменения в связи с положением компонентов в периодической системе элементов. Обобщены данные экспериментальных исследований и закономерности фазовых равновесий и строения диаграмм состояния в рядах систем редкоземельных металлов с германием титана и циркония в бинарных и тройных системах с тугоплавкими платиновыми металлами, тройных систем переходных металлов, в которых образуются фазы Лавеса, и тройных систем переходных металлов, содержащих тугоплавкие карбиды. Приводятся примеры использования полученных результатов при разработке новых материалов.  [c.247]

В работе [21 ] вычислены ТУд и А.5 для ряда бинарных и тройных систем. Из этих данных видно, что энергия активации Е меняется параллельно с изменением Wo — энергии связи за исключением случая диффузии 81 в Си. В системах А1—Си, Си—81 и Ве—81 с увеличением концентрации первого компонента растет как ДА, так и Е. Возрастание ДА говорит об уменьшении порядка в решетке сплава, что увеличивает вероятность диффузии атомов. Хотя в этих сплавах растут как ДА, так и Е, рост ДА превалирует и коэффициент диффузии увеличивается. В случае диффузии 8п в Си значение Е падает с увеличением концентрации олова. Значение ДА также уменьшается, но преобладает влияние энергии активации и коэффициент диффузии растет.  [c.23]


Легирование тантала и ниобия титаном особенно экономично, так как титан — самый дешевый из тугоплавких металлов (в 100 раз дешевле тантала) и самый легкий из них (плотность 4,5 г/см ). Кроме того, в отличие от других элементов (Мо, W или Zr) титан увеличивает пластичность Та и Nb. В связи с этим по принятой и описанной выше технологии производства ниобиевых сплавов был изготовлен и исследован тройной сплав Nb + + 20 ат.% Та + 7 ат.% Ti (Nb + 30 мас.% Та + 4 мас.% Ti). Предполагалось, что этот сплав по коррозионной стойкости будет мало отличаться от двой-  [c.84]

И, наконец, вопросы безопасности АЭС связаны с защитной оболочкой. АЕС разработала критерий тройного барьера против радиоактивных выбросов из реакторов в случае аварии. Первый—сама защитная оболочка топлива. В нормальном рабочем режиме эта оболочка, обычно изготовленная из циркониевого сплава или нержавеющей стали, выдерживает высокую температуру и высокий нейтронный поток. Большая часть радиоактивности в реакторе представлена продуктами деления, которые находятся внутри топливной таблетки до тех пор, пока сохраняется целостность защитной оболочки. Нередки случаи, когда отдельные твэлы разрушаются при нормальной работе или в них образуются поры. Правда, число таких элементов относительно мало по сравнению с общим числом топливных элементов.  [c.186]

Численные значения силовой постоянной и характеристические частоты свяли для ряда широко известных связей представлены в табл. 5 [22]. Силовая постоянная является непосредственной мерой величины силы связи. Следует заметить, что силовые постоянные для ординарных, двойных и тройных связей углерод — углерод очень близки к отношению 1 2 3. Вследствие весьма высоких численных значений частот молекулярных колебаний характеристические частоты связи, представленные в табл. 5, выражены через волновое число (ш), определяемого как частота (v), деленная на скорость света, или как величина, обратная длине волны  [c.125]

Предварительным и обязательным условием использования мономера для цепной полимеризации является наличие в его молекуле одной или нескольких двойных связей между атомами углерода С = С. Соединения, содержащие тройную связь С = С пли систему сопряженных двойных связей, а также соеднпення со связью С = N или С = О используются для синтеза полимеров равпительно редко.  [c.391]

Существенный прогресс последних лет в эталонной термометрии связан с созданием герметичных ячеек с чистыми газами для воспроизведения температур их тройных точек. Осуществленное по разработанной ККТ программе международное сличение транспортируемых герметичных ячеек разных лабораторий, в том числе ВНИИФТРИ, показало, что их воспроизводимость по крайней мере в несколько раз лучше, чем на традиционной стационарной аппаратуре. Поэтому естественна современная тенденция положить в основу будущей МПТШ в качестве реперных температур только тройные точки в ее низкотемпературной части и точки затвердевания металлов при температурах выше 0° С. Отметим в этой связи превосходные метрологические характеристики точки галлия. В низкотемпературной части МПТШ эта программа, обеспечивающая повышение воспроизводимости будущей шкалы в несколько раз, может быть, без сомнения, реализована вплоть до 24 К, особенно при добавлении к традиционным тройным точкам МПТШ-68 тройной точки вблизи 150 К и точки плавления галлия.  [c.7]

Наибольшие трудности встречает сегодня выбор метода воспроизведения будущей МПТШ в интервале 13,8—24 К. Традиционная схема с платиновым термометром, градуированным в реперных точках, неизбежно потребует применения точек по температурам кипения водорода со всеми их недостатками, поскольку здесь просто не существует тройных точек в числе, достаточном для точного вычисления поправочной функции. Отметим, что пока не удалось получить удовлетворительных результатов для тройной точки дейтерия вблизи 18 К. Это связано, по-видимому, с недостаточной изученностью процессов орто-пара конверсии. К этому добавляются характерные для измерений с платиновым термометром в этом интервале температур проблемы их стабильности. Преимущество традиционного метода состоит в возможности перекрыть большой интервал температур единственным и очень широко применяемым прибором, каким является платиновый термометр сопротивления.  [c.7]

Неравновесные смеси орто- и параводорода имеют температуры тройных точек и точек кипения в промежутках между значениями, указанными в табл. 4.3. В связи с этим состав водорода, использующегося для реализации температуры репернож точки, должен быть определен. Поскольку орто—пара конверсия направлена к состоянию с более низкой энергией, переход, от высокотемпературного к низкотемпературному равновесному состоянию сопровождается выделением тепла, составляющим около 1300 Дж-моль при 20 К. Выделяющееся при конверсии тепло приводит к тому, что водород, залитый в сосуд Дьюара сразу после ожижения, испаряется при хранении более чем наполовину. Именно поэтому желательно включить катализатор конверсии между ожижителем и сосудом для хранения водо-  [c.153]

В связи с обсуждением опытов Вавилова м ы обращали внимание на изменение числа поглощающих частиц под влиянием мощного падающего излучения. Однако это не единственный эффект, имеющий место при больших интенсивностях света. В 156 подчеркивалась тесная связь законов поглощения и дисперсии с представлением об атоме как о гармоническом осцилляторе, заряды которого возвращаются в положение равновесия квазиупругой силой. Если интенсивность света, а следовательно, и амплитуда колебаний зарядов достаточно велика, то возвращающая сила уже не будет иметь квазиупругий характер, и атом можно представить себе как ангармонический осциллятор. Из курса механики известно, что при раскачивании такого осциллятора синусоидальной внешней силой (частота ш) в его движении появляются составляющие, изменяющиеся с частотами, кратными со, — двойными, тройными и т. д. Пусть теперь собственная частота осциллятора соо. подсчитанная в гармоническом приближении, совпадает, например, с частотой 2ш. Энергия колебаний зарядов в этом случае особенно велика, она передается окружающей среде, т. е. возникает селективное поглощение света с частотой, равной со = /2 0o. Таким образом, спектр поглощения вещества, помимо линии с частотой о),,, должен содержать линии с частотами, равными /гСОо, а также /зй)(, и т. д. Коэффициент поглощения для этих линий, как легко понять, будет увеличиваться с ростом интенсивности света.  [c.570]


Аналогичным образом происходит и генерация третьей гармоники с частотой Зсо. Мощность третьей гармоники пропорциональна кубу мощности излучения падающей волны. Трудность получения генерации третьей гармоники связана с малым значением поляризуемости на тройной частоте. Это обстоятельство вынуждает применять потоки большой интенсивности, что часто приводит к разрушению материала. Однако, несмотря на эти трудности, генерация третьей гармоники наблюдается при выполнении условия синхронизма в исландском шпате (СаСОз), обладающем значительным двойным лучепреломлением, а также в некоторых оптически изотропных кристаллах (Ь1Р, ЫаС1) и жидкостях.  [c.305]

Модели структуры Не П. Открытие Х-точки и в особенности значительная аномалия теплоемкости П1)ивели к необходимости выяснения структуры жидкого гелия ниже этой температуры. Быстрое уменьшение энтропии пиже Х-точки, которое означает значительное увеличение упорядочения в Не II, стали связывать с фактом отсутствия у гелия тройной точкя. Существова1П1е Х-точки и ее связь со структурой гелия впервые обсуждал в 1932 г. Кеезом. Ои сравнил аномальный ход теплоемкости гелия с аномалиями теплоемкости, обнаруженными в аммониевых солях и твердом метане [32]. Рассмотрев возможные причины аномалии в гелии, а именно  [c.798]

Иногда колебание характерной группы атомов в сложной молекуле можно рассматривать изолированно как колебание двухатомной молекулы. В этом случае для грубых оценок частоты такого колебания можно использовать формулу (3.1). Значения квазиупругой силы К, полученные из колебательных спектров, обычно находятся в следующих пределах для одиночной связи от 4-10 до 6-102 н/м, для двойной связи 8-10 —12-102 н/м и для тройной связи 12-102—19-102 н/м. Например, используя значение /(=5-102 ддд, связи С—Н, можно получить значение частоты колебаний v 2900 см , что хорошо согласуется с экспериментальными данными для многих молекул. Также хорошо согласуются расчетные и экспериментальные данные для связей С—О (чжПОО см ), С = 0 (v 1700 см ) и С = 0 (ч 2000 см- ).  [c.96]

Уравнение (2-31), как следует из его вывода, справедливо для любых фазовых равновесий в чистом веществе. После интегрирования оно дает связь между давлением и температурой, необходимую чтобы фазы 1 и 2 находились в равновесии. Для любого чистого вещества (кроме гелия) в равновесии могут попарно находиться твердая фаза и газ, жидкость и газ и твердое тело и жидкость. Если проинтегрировать уравнение Клапейрона — Клаузиуса для каждого из названных фазовых переходов, то получатся уравнения кривых (в координатах р, Т), представляющих собой геометрическое р j., место точек, в которых возмож- д чистого вещества, но фазовое равновесие соответствующих двух фаз. Эти кривые соответственно называются кривая сублимации, кривая парообразования и кривая плавления. Поскольку для чистого вещества возможно одновременное равновесие трех фаз, кривые сублимации, парообразования и жлав-ления должны пересекаться,в одной точке, представляющей собой тройную точку данного вещества. Перечисленные кривые изображены на рис. 2-1, где О — тройная точка, О А — кривая сублимации, О/С — парообразования и ОВ — плавления. Совокупность этих кривых в р, Т-коордпнатах представляет собой фазовую диаграмму.  [c.33]

Идеальный газ представляется наилучшим термометрическим веществом, так как имеет простую связь между характеристиками его свойств см. формулу (1.16)] и ряд других достоинств (высокую чувстБнтельиосгь к воздействию теплоты, постоянство свойств н др.). Путем использования (мысленного) идеального газа в качестве термометрического вещества построена идеально-газовая шкала температуры. Для построения стоградусной шкалы можно использовать идеальный газ, приняв за термометрическое свойство, например, объем V. Если в такой идеально-газовой стоградусной шкале за начало отсчета температуры принять состояние, в котором объем V становится равным нулю, то получим шкалу идеально-газовой абсолютной температуры (шкалу Кельвина). Температура тройной точки воды по шкале Цельсия равна 0°С, а по шкале Кельвина 273,15°С связь между температурами по шкале Кельвина (Т, К) и Цельсия (/, °С) имеет вид  [c.8]

Уменьшение Оисх ускоряет начало первичной рекристаллизации и понижает преимущественно за счет ускорения зародышеобразования у границ исходных зерен. Этот эффект наиболее отчетливо проявляется при горячей деформации. Однако если бы причина этого заключалась только в том, что у границ зерен легче формируются центры рекристаллизации, то крупнозернистых и мелкозернистых материалов было бы одинаковым. Отличалось бы только число центров, формирующихся ранее других. В действительности наблюдается заметное снижение if . Это, по-видимому, связано с тем, что при измельчении размера исходных зерен благоприятные условия для формирования центров рекристаллизации у их границ создаются при меньших степенях деформации, чем в крупнозернистом материале. Это хорошо согласуется с данными, приведенными в гл. III, о том, что уменьшение величины зерна приводит к более интенсивному упрочнению при деформации за счет ускорения начала множественного скольжения вблизи границ и тройных стыков, а также ускорения усложнения дислокационной структуры.  [c.341]

В ряде случаев требуется такой магнитный материал, у которого магнитная проницаемость не зависит от напряженности магнитного поля. В частности, этот материал применяют в некоторых дросселях, трансформаторах тока с постоянной погрешностью, в аппаратуре дальней телефонной связи, высокочастотной многоканальной электросвязи, некоторых измерительных приборах и пр. К таким материалам относится перминвар — тройной сплав железа, никеля и кобальта. Магнитная проницаемость перминвара при специальной термообработке остается практически постоянной до значения напряженности магнитного поля 80—160 А/м. Применение перминвара ограничивается технологическими трудностями и высокой стоимостью. К числу сплавов, отличающихся известным постоянством магнитной проницаемости в слабых магнитных полях, относится сплав изоперм, состоящий из железа, никеля и меди с добавкой алюминия. Применяется он в производстве высококачественной телефонной аппаратуры, например для изготовления сердечников некоторых катушек.  [c.300]

Контактные сплавы. В состав т частью благородные металлы в связи с их стойкостью к окислению. Однако из-за их низкой температуры плавления приходится для сильно нагруженных контактов применять сплавы тугоплавких металлов. В качестве примера рассмотрим некоторые сплавы (табл. 22.2). Золото-никелевые сплавы отличаются высокой твердостью, стойкостью к эрозии (иглообразованию) и к свариванию. Недостатком сплавов является склонность к окислению при мощной дуге. При 5% Ni = 1000° С, р =0,123 ом-мм м (для золота р =0,22 ом-лш /м). Сплав золота с цирконием (3%), помимо указанных достоинств, обладает стойкостью к окислению известны такие тройные сплавы на основе золота. Серебрено-палладиевые сплавы имеют высокую температуру плавления (1330° С), стойки к эрозии и свариванию и вдвое тверже серебра удельное сопротивление такого сплава при 40% Pd значительно р = 0,42 ом Эти сплавы обладают защитными свойствами про-  [c.294]



Смотреть страницы где упоминается термин Связи тройные : [c.161]    [c.100]    [c.51]    [c.497]    [c.23]    [c.54]    [c.115]    [c.142]    [c.336]    [c.202]    [c.357]    [c.843]    [c.18]    [c.316]    [c.134]    [c.146]    [c.114]    [c.17]    [c.7]    [c.19]    [c.129]    [c.9]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.377 , c.417 , c.545 ]



ПОИСК



Тройные связи столкновения



© 2025 Mash-xxl.info Реклама на сайте