Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы для вращательно-колебательных спектров

Практическое использование формул (6.14) и (6.15) затрудняется громоздкостью выражений, связывающих вращательные и центробежные постоянные и константы удвоения с молекулярными параметрами. В [58, 59] предложено использовать для вывода этих выражений ЭВМ, получены формулы и проведен анализ спектра молекулы СО2. В спектрах линейных молекул существенную роль играют колебательные случайные резонансы типа Ферми.  [c.178]


Правила отбора для переходов комбинационного рассеяния двухатомных и линейных молекул имеют вид Ао = 0, =ь1 и А/ = 0, 2, где V и / — колебательное и вращательное квантовые числа соответственно. Переходы с Ау=0, А/= 2 соответствуют чисто вращательному, а переходы с Ау= Н= 1 и А/ = 0, 2 — колебательно-вращательному комбинационному рассеянию. Переходы с А/ = 0 и Ау = 0 соответствуют рэлеевскому молекулярному рассеянию. Совокупность линий, образованных переходами с А/ = ==—2, А/ = 0, А/==+2, называют соответственно 0-, Q- и 5-ветвями колебательно-вращательного спектра СКР.  [c.28]

Вода, Н2О. Изучение интенсивного инфракрасного вращательного спектра, а также структура этого спектра (см. гл. I) вместе со структурой вращательно-колебательного спектра (см. гл. IV) однозначно приводят к выводу, что молекула HjO не линейна. Этот вывод находится в согласии и со структурой колебательного спектра. В комбинационном спектре водяных паров имеется одна интенсивная линия с частотой 3654,5 см (Джонстон и Уолкер [475], Ренк, Ларсен и Борднер [716], Бендер [135]). Она соответствует, очевидно, симметричному колебанию (фиг. 25, а), так как комбинационные линии для несимметричных колебаний должны быть слабыми. С другой стороны, частота 3654,5 весьма близка к частоте колебания радикала ОН (AGj = 3568,4) и поэтому не может принадлежать второму симметричному колебанию Vj, т. е. изменению угла между связями ОН. Наблюдались или не наблюдались другие комбинационные частоты водяных паров пока еще не ясно.  [c.304]

Правила отбора. Совершенно аналогично случаю линейных молекул и молекул, являющихся симметричным волчком, до тех нор, пока взаимодействие колебания и вращения не слин1ком велико, правила отбора для переходов между колебательными уровнями во вращательно-колебательном спектре и в чисто колебательном спектре совершенно одинаковы (табл. 55). В частности, основное состояние может комбинировать (в инфракрасном поглощении) только с колебательными состояниями типа Еа. Правило отбора для вращательного квантового числа J также обычное  [c.481]

В случае линейных молекул с центром симметрии (принадлежащих к точечной группе >00 л, как, например, молекулы СО и С Н ) положительные вращательные уровни являются симметричными, отрицательные — антисимметричными по отношению к одновременной перестановке всех пар одинаковых ядер. Это имеет место для всех колебательных уровней, являющихся симметричными по отношению к инверсии (типы симметрии И, П , g,...) обратное соотношение имеет место для всех колебательных уровней, антисимметричных по отнопюнию к инверсии (типы симметрии П , Д ,. ..). На фиг. 99, б" показано несколько примеров. Все эти соотношения аналогичны соотношениям для различных электронных состояний двухатомных молекул их доказательство совершенно аналогично приведенному в книге Молекулярные спектры I, гл. V, 2, если рассматриваемые там электронные собственные функции заменить колебательными собственными функциями.. Для двухатомных молекул колебательные собственные функции всегда полносимметричны в данном случае предполагается, что электронная собственная функция является полносимметричной. Последнее утверждение практически всегда справедливо для электронного основного состояния, но не всегда справедливо для возбужденных электронных состояний, для которых поэтому нужно применять другие правила.  [c.400]


Спектры многоатомных молекул гораздо сложнее и зависят от симметрии молекулы. Для линейной молекулы, например СОг, число степеней свободы колебании а=4, а для ПаО а=3. Таким образом, каждая из основных полос по-глощения многоатомной молекулы в н1 фракрасной области соответствует определенному изменению одного илн нескольких колебательных квантовых чисел вме-,Сте с соответствующими вращательными линиями. Детальная структура многО етомных молекул может быт1< очень сложной.  [c.322]

Многие из многоатомных молекул являются нелинейными и жесткими. Оставшаяся часть настоящей главы посвящена таким молекулам линейные и нежесткие молекулы рассмотрены в гл. 12. Под термином жесткая молекула в настоящей книге подразумевается молекула, находящаяся в электронном состоянии с единственной равновесной конфигурацией ядер или же в состоянии, в котором барьеры, разделяющие различные равновесные конфигурации на поверхности потенциальной энергии, непреодолимы. Для нежестких молекул (типа аммиака) барьеры по-те1щиальной энергии преодолимы, а туннелирование молекулы между потенциальными минимумами приводит к расщеплениям и сдвигам колебательно-вращательных уровней энергии, наблюдаемым в спектрах.  [c.153]

Наблюдались две системы полос испускания подобного типа упоминавшиеся ранее полосы NH2 в спектрах испускания различных пламен, в спектрах разрядов, а также в спектрах комет. Единственное отличие от спектра поглощения заключается в том, что в спектре испускания появляются полосы, у которых в нижнем состоянии возбуждено по одному или по нескольку квантов одного или большего числа колебаний. Второй является система полос в спектре пламени окиси углерода, которые оставались не отнесенными в течение нескольких десятилетий. Однако недавно Диксон [283] показал, что эти полосы обусловлены изогнуто-линейным переходом в молекуле СОз- Все наблюдавшиеся полосы связаны с переходами с двух самых низких колебательных уровней возбужденного состояния (типа В2), в котором молекула сильно изогнута (0 122°). В нижнем же (в основном) -состоянии, в котором молекула линейна, в переходах участвуют высокие возбужденные колебательные уровни. Наблюдается характерное чередование четных и нечетных подполос в последовательных полосах прогрессии по 2, однако колебательная структура усложнена наличием резонанса Ферми. Переход относится к параллельному типу (фиг. 90, а), т. е. К = I" и были идентифицированы полосы со значениями от О до 4. Определение величины А — В ъ возбужденном состоянии не может быть произведено непосредственно из спектра (поскольку АК = 0), как и в случае спектра поглощения СЗг- Для этого необходимо знать разности энергий между уровнями с различными значениями I в нижнем состоянии. В случае молекулы СО2 такие разности энергий могут быть получены экстраполяцией данных из инфракрасных спектров (Куртуа [246]). Полученные вращательные постоянные верхнего состояния приведены в табл. 64 приложения VI.  [c.218]

В основном состоянии X Bi молекула NHg сильно изогнута, так же как и молекула Н2О в своем основном электронном состоянии, в то время как в возбужденном состоянии A i молекула NH2 почти линейна (см. стр. 217). Снова, как и для других дигидридов, из-за сильного электронно-колебательного взаимодействия (эффект Реннера — Теллера) из одного П. -состояния линейной конфигурации возникают два состояния. Благодаря значительному изменению угла при электронном переходе в сиектре наблюдается длинная прогрессия полос с чередующейся интенсивностью для четных и нечетных значений К (так же как и в случае красных полос ВНг и СН2). Разности Д гС для уровней с i = О в верхнем состоянии сначала увеличиваются и только к концу прогрессии начинают уменьшаться. Дублетная структура электронного перехода обнаруживается в незначительном расщеплении почти всех линий (фиг. 95). Так же как и для красных полос ВН2 и СНг, момент перехода для рассматриваемой системы NH2 перпендикулярен плоскости молекулы (полосы типа С). Джонс и Рамсей [638а] проанализировали ряд горячих полос в спектре NH2 с целью определения значения частоты деформациоипого колебания V2 в основном состоянии. Вращательные и колебательные постоянные NH2 приведены в табл. 62.  [c.504]


Дальнейшее совершенствование банков данных по параметрам спектральных линий (ПСЛ) предпринято в [99] на основе использования современных достижений теории колебательно-вращательных спектров [18], позволяющих более строго учесть влияние внутримолекулярных (спин-вращательного, спин-колебательного, колебательно-вращательного) взаимодействий на ПСЛ. Источниками разработки алгоритмов послужили методики расчета ПСЛ, созданные в Институте оптики атмосферы СО АН СССР [19, 20]. В банке данных содержится информация о ПСЛ для следующих типов молекул двухатомных гетероядерных с нулевым и полуцелым спином гомоядерных с отличным от нуля целым спином трехатомных линейных симметрии Сооу, Оооп] трехатомных асимметричных, в том числе с полуцелым спином и четырехатомных симметрии Сзу. В банк данных заносится как информация о ПСЛ, полученная расчетными методами, так и являющаяся результатом обработки измерений, выполненных на спектрометрах высокого разрешения.  [c.203]


Смотреть страницы где упоминается термин Линейные молекулы для вращательно-колебательных спектров : [c.782]    [c.312]    [c.603]    [c.505]    [c.359]    [c.436]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.408 , c.426 ]



ПОИСК



Вращательно-колебательные спектры

Вращательные линейных молекул

Колебательные

Колебательный спектр

Линейные молекулы

Линейные молекулы вращательно-колебательные комбинационные спектры 426 (глава

Линейные молекулы для вращательных спектров

Линейные молекулы инфракрасный вращательно-колебательный спектр 408, 417 (глава

Спектр молекулы

Спектры вращательные



© 2025 Mash-xxl.info Реклама на сайте