Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия разрушения при циклическом нагружении

ДЕФОРМИРОВАНИЮ И РАЗРУШЕНИЮ ПРИ ЦИКЛИЧЕСКОМ НАГРУЖЕНИИ В СВЯЗИ С УСЛОВИЯМИ НАГРУЖЕНИЯ И СТРУКТУРНЫМИ ИЗМЕНЕНИЯМИ МАТЕРИАЛА  [c.166]

В развитии разрушения при циклическом нагружении в условиях контактного трения большое значение могут иметь такие процессы, как слипание и отрыв частиц металла, которым до настоящего времени не уделялось достаточного внимания, хотя, по мнению некоторых авторов [9], это явление может играть доминирующую роль в развитии фреттинг-коррозии.  [c.154]


В связи с этим возникает необходимость знать условия перехода тел с трещинами к хрупкому разрушению и значения характеристик вязкости разрушения при циклическом нагружении ограничивающие кинетическую диаграмму усталостного разрушения справа. В соответствии с результатами, полученными в работах [976, 983], надо учитывать следующее.  [c.340]

Критерии разрушения при циклическом нагружении. Для различных условий нагружения в качестве меры повреждения используют различные параметры. Некоторые из них имеют чисто феноменологический характер, например, время, число циклов,  [c.205]

Выявленные закономерности деформирования и разрушения материала при циклическом нагружении позволили сформулировать деформационно-силовой критерий, который дает возможность прогнозировать долговечность по условию зарождения макроразрушения при ОНС с учетом максимальных нормальных напряжений в цикле и особенностей суммирования повреждений при нестационарном нагружении.  [c.148]

К разрушениям второго типа, которые могут происходить также при различных схемах нагружения, следует отнести разрушения, для которых критические параметры существенно зависят от времени нагружения в том или ином виде. Типичным примером является разрушение, получившее в литературе название разрушение при взаимодействии ползучести и усталости [240, 341] при циклическом нагружении в определенном температурном интервале долговечность при одной и той же амплитуде деформации зависит от скорости деформирования, значительно уменьшаясь при малых эффективных скоростях деформирования, в частности при циклировании с выдержками. На стадии развития усталостного повреждения также известны многочисленные экспериментальные данные о влиянии частоты нагружения в определенных условиях, особенно в коррозионной среде, на скорость роста усталостных трещин [199, 240, 310,  [c.150]

Рис. 3.1. Влияние скорости деформирования I (а, б) и частоты нагружения f (в) на характеристики разрушения в условиях ползучести е/ (а) (ферритная сталь 0,5% Сг, 0,25% Мо. 0,25% V при Г = 550 С [342]), при циклическом нагружении (б) сталь типа 304, Де = 1 % при 7 = 600°С (/) и Г = 700 С (2) Рис. 3.1. <a href="/info/521910">Влияние скорости</a> деформирования I (а, б) и <a href="/info/28897">частоты нагружения</a> f (в) на <a href="/info/481866">характеристики разрушения</a> в условиях ползучести е/ (а) (<a href="/info/101259">ферритная сталь</a> 0,5% Сг, 0,25% Мо. 0,25% V при Г = 550 С [342]), при <a href="/info/28783">циклическом нагружении</a> (б) сталь типа 304, Де = 1 % при 7 = 600°С (/) и Г = 700 С (2)

Если зафиксировать малое А и принять его равным структурному параметру материала До (такого рода параметры часто называют процессом зоны), то критерий (4.84) будет подобен критерию Си [412—414] критической плотности энергии деформирования на некотором расстоянии от вершины трещины. Учитывая, что при циклическом нагружении плотность энергии деформирования й щшл равна необратимой рассеянной энергии за цикл, критерий (4.84) сводится к условию разрушения элементарного объема у вершины трещины, которое можно представить в виде  [c.258]

При разработке моделей прогнозирования трещиностойкости и развития трещин необходимо было сформулировать условие накопления повреждений в градиентных полях напряжений и деформаций. Было показано, что повреждения накапливаются, если размер необратимой упругопластической зоны (при статическом нагружении) или обратимой упругопластической зоны (при циклическом нагружении) больше структурного элемента, размер которого во многих случаях можно принять равным диаметру зерна. В противном случае, когда размер упругопластической зоны меньше размера структурного элемента, материал практически не повреждается и локальные критерии разрушения, сформулированные в терминах механики сплошной деформируемой среды, не дают адекватных реальным ситуациям прогнозов.  [c.264]

Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне очага концентрации приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Поэтому при циклическом нагружении явление концентрации требует особого внимания, что находит свое выражение прежде всего в тех мерах, которые применяются на практике при проектировании машин. Для деталей, работающих в условиях циклических напряжений, внешние обводы стремятся сделать возможно более плавными, радиусы закругления во внутренних углах увеличивают, необходимые отверстия располагают в зоне пониженных напряжений и т.д.  [c.485]

Несущая способность элементов конструкций по сопротивлению усталости при циклическом нагружении рассматривается в свете вероятностных представлений о возникновении разрушения и об уровне действующих переменных напряжений. При этом следует иметь в виду основные условия нагруженности изделий и их элементов. Многим из них свойственны стационарные режимы переменной напряженности, уровень которой в пределах большого парка однотипных конструкций и их деталей от изделия к изделию меняется, причем отклонение уровней носит случайный характер. Примером таких деталей являются лопатки стационарных турбомашин. Условия возбуждения колебаний этих деталей в однотипных машинах зависят от изменчивости условий газодинамического возбуждения и механического демпфирования, уровня частоты собственных колебаний и эффекта их связности в роторе с лопатками (что обычно является результатом технологических отклонений). Подобные условия имеют место и для многоопорных коленчатых валов стационарных поршневых машин при укладке их на не вполне соосные опоры, для шатунных болтов из-за неодинаковости их монтажной затяжки и т. д.  [c.165]

За последние годы в СССР и за рубежом опубликован ряд работ по металловедению и технологии титановых сплавов, отражены современные подходы к проблеме их разрушения. Вопросы же циклической прочности и долговечности титановых сплавов с учетом влияния агрессивных сред освещены мало. Авторы попытались на основании собственных исследований и обобщения имеющихся отечественных и зарубежных материалов установить основные закономерности изменения свойств титановых сплавов при циклических нагружениях. Особое внимание при этом обращено на рассмотрение природы процессов накопления циклических повреждений в условиях агрессивных сред и на выявление факторов, отрицательно сказывающихся на надежности и эксплуатации при циклических нагрузках.  [c.4]

Соотношение (1.21) указывает на уменьшение доли периода роста трещины в долговечности сварного соединения по мере возрастания числа циклов нагружения до разрушения соединения. Относительная доля периода роста трещины в периоде нагружения элемента конструкции до ра.зру-шения существенно зависит от условий нагружения элемента конструкции, вида материала и состояния поверхности, а также концентрации напряжений. При ВЫСОКО концентрации напряжений доля периода роста трещины в общей долговечности образца или элемента конструкции может оказаться значительной. Возникает естественный вопрос о том, в какой мере соотношение между периодами зарождения и роста трещины может быть использовано для характеристики поведения материала при циклическом нагружении. Указанная информация позволяет установить, насколько эти два разных способа накопления повреждений материала взаимосвязаны или зависимы между собой для разных условий нагружения и их концентрации в районе очага разрушения.  [c.61]


Принимая во внимание отсутствие выраженного накопления компенсаторами в условиях эксплуатации односторонних деформаций, критерий может быть записан в виде, когда рассматривается только усталостное повреждение, оценивающееся по данным длительного циклического разрушения (при жестком нагружении)  [c.199]

Для аналитической интерпретации данных по малоцикловому разрушению и определения констант критериальных уравнений малоцикловой прочности (1.1.10) — (1.1.12), а также расчета долговечности необходимо располагать характеристиками статической прочности и пластичности. Такие данные определяются по результатам статических испытаний образцов с записью диаграмм деформирования вплоть до разрушения. Статический разрыв образцов производится на тех же испытательных малоцикловых установках, причем масштаб записи канала деформаций и чувствительный элемент деформометра подбираются из условий обеспечения при непрерывном нагружении регистрации полной диаграммы деформирования. В связи с отсутствием временных эффектов статические испытания до разрушения можно проводить с промежуточными разгрузками образца для создания запаса хода чувствительного элемента, используемого для циклических испытаний деформометра.  [c.238]

Даны формулировка, феноменологическое описание и экспериментальное обоснование фундаментальных закономерностей циклической пластичности конструкционных металлов при нормальных, повышенных и высоких температурах, необходимые для решения соответствующих краевых задач, анализа условий разрушения при неоднородном деформируемом состоянии в проблеме механики деформируемого тела и приложения в расчетах элементов конструкций при малоцикловом нагружении..  [c.273]

Статьи, заключенные в данный сборник, содержат результаты исследований, выполненных за последние годы в области изучения микроструктурных особенностей деформационных процессов и разрушения в поликристаллических металлических материалах (в том числе композиционных) в условиях теплового и механического воздействия. При проведении исследований использованы методы качественной и количественной тепловой микроскопии в сочетании с другими физическими методами. В ряде работ содержатся сведения о методиках и аппаратуре, применяемых для получения прямых экспериментальных данных об изменениях микростроения и уровня механических свойств изучаемых материалов. Значительное внимание в сборнике уделено изучению микроструктурных особенностей развития пластической деформации сталей и сплавов, биметаллических композиций и сварных соединений при тепловом воздействии в условиях статического и циклического нагружения.  [c.4]

Износ как усталостное разрушение материала, усталостное в том смысле, что разрушение происходит в результате многих актов механического воздействия на данный микроучасток поверхности трения со стороны контртела, может происходить в условиях как упругого, так и пластического контакта. В первом случае имеет место усталостный процесс, при котором число циклов до разрушения составляет тысячи и больше. Во втором — разрушение происходит в условиях так называемой малоцикловой усталости [49], когда число циклов до разрушения — десятки и больше. Оба эти процесса протекают во времени при циклическом нагружении микрообъемов материала и различаются уровнем возникающих напряжений и характером деформирования поверхностного слоя [50].  [c.18]

Как показано выше, при циклическом нагружении образовавшаяся в резьбовом соединении усталостная трещина распространяется по впадине профиля резьбы с одновременным (или последующим) развитием в соседние впадины. Такой характер протекания процесса разрушения в связи с условиями нагружения и конструктивным исполнением на различных стадиях развития трещин будет характеризоваться соответствующими критериями локального разрушения.  [c.388]

Движущей силой процесса разрушения согласно иред-ставлениям линейной упругой механики разрушения является поле напряжения у вершины трещины, описываемое коэффициентом К. С помощью этого коэффициента можно также охарактеризовать и условия роста трещины при циклическом нагружении, в процессе коррозии под напряжением и в случае водородной хрупкости.  [c.21]

Процессы разрушения при циклическом режиме нагружения, для которого установлена временная зависимость прочности, и при статическом нагружении обычно противопоставляются друг другу предполагается, что закономерности разрушения при циклическом и статическом нагружении различны. Однако кинетическая теория разрушения твердых тел дает основание считать, что хотя характер изменения внешней нагрузки оказывает влияние на процессы деформации и разрушения, существует определенная общность процессов разрушения независимо от условий нагружения процессы разрушения обусловлены, в основном, одинаковым механизмом.  [c.34]

Другим важным вопросом обеспечения прочности и ресурса атомных реакторов, не получавшим отражения в традиционных расчетах энергетических установок по уравнениям (2.1) —(2.3), являлся анализ сопротивления деформациям и разрушению при циклическом нагружении [2,5-7,16]. Как следует из данных гл. 1, в процессе эксплуатации атомных реакторов число циклов нагружения на основных режимах изменяется в достаточно широких пределах - от (2- 5) 10 при гидроиспытаниях до (1 2) Ю при программных изменениях мощности и до 10 —10 с учетом вибро-нагруженности. Систематические исследования прочности в этом диапазоне числа циклов были начаты применительно к энергетическим установкам в середине 50-х годов, а в середине 60-х годов были сформулированы основные (преимущественно деформационные) критерии разрушения и свойства диаграмм циклического деформирования [17,18 и др.]. По опытным данным, полученным на лабораторных образцах, было показано, что при числе циклов до 10 циклические пластические деформации оказываются сопоставимыми (в диапазоне числа циклов 10 —10 ) или существенно большими (в диапазоне числа циклов 10 -5 10 ), чем циклические упругие деформации. При этом в зависимости от типа металлов и условий нагружения (с заданными амплитудами деформаций или напряжений) пластические деформации по мере увеличения числа циклов могут возрастать (циклически разупрочняющиеся металлы), уменьшаться (циклически упрочняющиеся металлы) или оставаться постоянными (циклически стабильные металлы). Указанные особенности поведения металлов при циклическом упругопластическом деформировании обусловливают нестационар-ность местных напряжений и деформащ1Й в зонах концентрации при стационарных режимах внешних нагрузок. Для малоцикловой области уравнения кривых усталости и сами кривые усталости при числах циклов 10 —Ю представлялись не в амплитудах напряжений (как для обычной многоцикловой усталости при числах циклов 10 —10 ), а в амплитудах упругопластических деформаций.  [c.40]


Критерии же длительного циклического разрушения в форме (4.52) и (4.53) учитывают кинетику петли с числом циклов нагружения и поэтому более полно и точнее описывают процесс накопления повреждений и условия разрушения при циклическом упру-топластическом нагружении.  [c.123]

Существенное снижение характеристик сопротивления усталостному разрушению металлов при наличии дефектов типа грещин известно давно. Однако особенн большой интерес к влиянию трещин на прочность материалов и деталей машин проявляется в последние годы. Эго вызвано интенсивным развитием относительно нового> раздела механики твердого деформируемого тела — механики разрушения, рас сматривающей условия разрушения на основе анализа напряженно-деформированного сосгояния в вершине трещины. В этом направлении выполнен большой объем теоретических и экспериментальных исследований, позволивших установить общие закономерности начала развития трещин, их стабильного развития и окончательного разрушения при циклическом нагружении с учетом влияния технологических,, конструкционных и эксплуатационных факторов. Эти исследования позволили еде-лагь следующие основные выводы.  [c.3]

Приведенные выше результаты исследования вязкости разрушения сталей 10ГН2МФА и 15Г2АФДпс в условиях плоской деформации при статическом и циклическом нагружении показали, что вязкость разрушения при циклическом нагружении сущест-сенно ниже, чем при монотонном. Такое снижение происходит при нагружении как симметричным, так и пульсирующим изгибом со скоростью увеличения коэффициента интенсивности напряжений такой же, как при монотонном нагружении, и указанное явление нельзя объяснить различной скоростью приложения нагрузки в этих двух случаях. Вместе с тем имеются материалы — сталь 45, после закалки и низкого отпуска, армко-железо при 77 К,— для которых вязкость разрушения при монотонном и циклическом нагружении практически совпадает. Полученным результатам можно дать следующее объяснение.  [c.325]

Так как в общем случае циклическая пластическая деформация изменяется в зависимости от числа нагружений и лишь для циклически стабильных материалов остается постоянной, в уравнении (И) рекомендуется [13, 16] использовать значение 8р, соответствующее 50 % цик.чов нагружения от данной долговечности, когда для большинства материалов достигается состояние, близкое к циклической стабилизации, В ряде случаев в (11) используют значения 8 циклической упругопластической деформации (вместо ер). Зависимости типа (И) были предложены для описания условий разрушения при жестком нагружении в области малых чисел циклов, когда разрушение определяет пластическая составляющая деформации 10 ). Однако с увеличением числа циклов до разрушения пластическая деформация йтановятся соизмеримой с упругой, в связи с чем необходима соответствую щая модификация уравнений.  [c.96]

Исследования отклика системы на скорость движения усталостной трещины открыли возможность резкого повышения информативности опытов по механическим испытаниям при учете критических точек [3]. Процессу разрушения, как и другим неравновесным процессам, свойственны стадийность и многомасштабность. При циклическом нагружении легче всего изучать особенности разрушения на различных масштабных уровнях [32-35]. Путь к этому открыла линейная механика разрушения, так как позволила описать локальное (у края трещины) напряженное деформированное состояние. При матическом на1ружении образца с предварительно созданной трещиной трудно обеспечить ус]ювия плоской деформации на фронте трепщны. Напомним, что условия плоской деформации предполагают образование у края трещины зоны пластической деформации, пренебрежительно малой по сравнению с длиной трещины. Для этого требуется испытать крупно1абаритные образцы при пониженной температуре (в случае пластичных материалов).  [c.300]

Снижение запасов прочности Hq, Hn и Пе по сравнению с указанными выше значениями (как и при расчетах сопротивления хрупкому разрушению) должно основываться на результатах тензометрических определений действительных нагрузок на моделях или натурных конструкциях, а также на экспериментальном изучении характеристик деформирования и разрушения применяемых конструкционных материалов в условиях, приближающихся к эксплуатационным. В некоторых случаях снижение запасов прочности основано на результатах натурных испытаний конструкций при циклическом нагружении. Однако и при проведении указанных выше испытаний материалов и конструкций запасы riQ, Пе и tiff должны быть соответственно не ниже 1,2—1,3 1,2— 1,5 и 3—5.  [c.98]

Разрушение материала в условиях сдвига связано не только с процессом роста трещины по плоскостям скольжения. Даже при циклическом нагружении путем скручивания образцов развитие разрушения может происходить путем первоначального разрушения отрывом в направлении по касательной к границе фронта трещины [37, 38]. Такая ситуация имела место в условиях эксплуатации при разрушении шарнирного устройства в результате его заклинивания и повторного скручивания. Плоскость разрушения располагалась по галтельному переходу и была макроскопи-  [c.92]

В представленном соотношении указана связь между определяемым фрактографически уровнем эквивалентного напряжения <7 и уровнем одноосного циклического напряжения с нулевой асимметрией цикла через поправочную функцию с параметрами X,. Каждый параметр характеризует условия циклического нагружения элемента конструкции в эксплуатации. Поскольку после разрушения любого элемента конструкции, в том числе и лопаток ГТД, никогда не известны условия его нагружения в полной мере, то всегда определяемая фрактографически величина эквивалентного уровня напряжения не позволяет дать оценку значимости в разрушении того или иного фактора внешнего воздействия. Однако она указывает на интегральную роль условий нагружения на затраты энергии при циклическом нагружении материала в процессе роста трещины.  [c.581]

Для обоснования метода расчета длительной малоцикловой прочности компенсаторов выполнена программа исследований, включающая экспериментальное получение данных по долговечности сильфонных компенсаторов Z) -40 из нержавеющей аустенитной стали Х18Н10Т со следующими параметрами (рис. 4.3.1) dg = А см = 5,4 см = 0,129 R2 = 0,121 см Iq = 6,1 см п =11. Испытания выполнены с использованием специально спроектированной установки, позволяющей осуществлять требуемый режим циклического деформирования компенсаторов в условиях осевого растяжения — сжатия с заданными размаха-ми перемещений. Нагрев компенсаторов — печной, частота нагружений 10—56 циклов в минуту при постоянной температуре 600 С. Компенсаторы находились под давлением 1 атм, причем момент разрушения от циклического нагружения автоматически фиксировался по падению давления в результате утечки воздуха через образовавшуюся сквозную трепщну. Малый уровень давления практически не влиял на деформированное состояние конструкции и ее долговечность.  [c.203]

Термоциклическое нагружение происходит при специфических условиях, основными из которых являются неизотермическое деформирование материала, обусловливающее различную интенсивность накопления повреждений в первой и второй частях цикла одновременное накопление статического и циклического повреждений в течение каждого цикла разнородный характер повреждений (принтах материал подвергается более или менее длительному воздействию статической нагрузки с соответствующим повреждением границ зерен, а при тш — кратковременному унругопластическому деформированию, при котором деформации развиваются главным образом за счет сдвигов в теле зерен). Двойственный характер накапливаемого повреждения определяет и особый вид циклического упрочнения при термоусталости, выражающийся в чередовании процессов упрочнения и разупрочнения. Все эти обстоятельства проявляются и в характере разрушения при, термоциклическом нагружении, который, как упоминалось, является более сложным, чем при простых видах нагружения—механической усталости и длительном статическом нагружении.  [c.98]


Применение установки ИМАШ-10-68 и методов высокотемпературной металлографии при изучении процессов, которые протекают в материалах, подвергаемых нагреву при циклическом знакопеременном нагружении, весьма перспективно для получения детальных сведений о деформации и разрушении от усталости. Использование описанной выше аппаратуры позволило, в частности, изучить механизм деформации никеля при малоцикловом нагружении в области повышенных температур [48, с. 120—126 61 ], процессы высокотемпературного деформационного старения при циклическом нагружении малоуглеродистой стали 22К [50, с. 58—61 ] и аустенит-ной стали X18HI0T, а также провести микроструктурное исследование особенностей деформации и разрушения некоторых биметаллических материалов при высокочастотном нагружении в условиях повышенных температур [49, с. 85—92 50, с. 87—94].  [c.155]

Исследование закономерностей усталостного разрушения металлов показало, что длительность периода развития усталостных трещин может составлять основную часть общей долговечности образца. Известно, что отношение числа циклов, необходимых для зарождения трещины, к числу циклов распространения трещины до разрушения образца зависит от механических свойств материала и уровня амплитуды напряжения. С повышением амплитуды напряжения это соотношение понижается и в малоцикловой области числом циклов, необходимым для зарождения трещины, можно пренебречь, Прямые наблюдения развития микротрещииы при циклическом нагружении металлов позволяют высказать гипотезу о возникновении трещин критической длины в конце стадии зарождения, которой соответствует число циклов на экспериментально определенной линии повреждаемости (линия Френча). Трещины критической длины возникают также при нагружении исследуемых металлов с амплитудой напряжения, равной пределу усталости. При определенных условиях они являются нераспространяющимися трещинами и определяют предел усталости металлов с точки зрения механики разрушения.  [c.14]

Явление циклической ползучести и квазистатического разрушения чаще всего связано с условиями асимметричного мягкого нагру кения циклически стабильных и разупрочняющихся материалов. В ус.пови-ях жесткого нагружения односторонняя деформация не накапливается и процессы циклической по.тзучести не реализуются. Ква.зиста-тическое разрушение всегда связано с направленным пластическим деформированием, по не всегда накопление односторонних деформаций сопровон дается квазистатическим разрушением [11. Разрушение при циклической ползучести в малоцикловой области в общем случае может иметь и усталостный характер. При этом накопленная деформация достигает значительной величины, а разрушение происходит в результате образования и развития до критической величины усталостной трещины.  [c.134]

В.В.Панасюк с сотрудниками [59 150, с. 42—49], использо. ав разработанные ими оригинальное оборудование и методики, определили значение pH в вершине развивающейся трещины и изучили его влияние на скорость роста усталостной трещины в стали 40X13 в коррозионной среде с исходным pH =8. Они также показали, что при статическом нагружении в стационарной трещине минимальное значение pH может снижаться до 2,3. Установлено, что характер изменения pH в вершине усталостной трещины зависит от начальных значений pH. При исходном значении среды pH =8 наблюдается непрерывное уменьшение его в вершине трещины до 1,7 в момент разрушения образца, а при исходном значении pH = 2,3 этот показатель снижается в вершине трещины перед разрушением образца до —0,4..Таким образом, при циклическом нагружении степень снижения pH в вершине трещины выше, чем при статическом нагружении, а ее абсолютное значение зависит от величины pH исходного раствора. На основании изучения кинетики коррозионно-усталостного разрушения показано, что с изменением исходных значений pH среды в вершине трещины меняется не только скорость ее роста, но и характер кинетических кривых. При pH = 8 на кинетической кривой скорости роста трещины имеет место плато, типичное для коррозионного растрескивания. При pH =2,3 плато практически отсутствует. Поддержание заданных электрохимических условий в рабочей камере не означает их стабилизации в вершине трещины.  [c.106]

Длительная прочность полимерных материалов снижается в условиях циклического нагружения по сравнению с выдержкой при постоянном напряжении, если последнее равно по величине максимальному за период цикла переменному напряжению. Данное явление может быть связано с различными причинами. Прежде всего полимеры обнаруживают при циклическом нагружении тенденцию к саморазогреву, причем большую роль здесь играют частота нагружения и условия теплоотвода. Тепло генерируется за счет необратимой работы как вязкоупругого, так и вязкопластического деформирования.Повышениетемпературыматериалав процессе деформирования снижает его сопротивление длительному разрушению, как это вытекает, например, из представлений термофлук-туационной теории. Вместе с тем, при достаточно сильном само-разогреве (в условиях затрудненного теплоотвода) материал может перейти в некоторый момент из стеклообразного в вязкотекучее состояние, причем сопротивление деформированию практически утрачивается даже при отсутствии макроскопического разрушения.  [c.36]


Смотреть страницы где упоминается термин Условия разрушения при циклическом нагружении : [c.13]    [c.251]    [c.168]    [c.17]    [c.146]    [c.382]    [c.350]    [c.268]    [c.111]    [c.29]    [c.358]    [c.369]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.210 ]



ПОИСК



Нагружение Условия

Нагружение циклическое

Разрушение Условие

Сопротивление деформированию и разрушению при циклическом нагружении в связи с условиями нагружения и етруктурньши изменениI ями материала

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте