Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термометрия применение

Численная величина температуры тела может быть измерена при помощи различных термометрических устройств (термометров), применение которых основывается на том факте, что два соприкасающихся тела через некоторое время приходят к состоянию теплового равновесия и принимают одинаковую температуру.  [c.10]

Зная как изменяется объем тела в зависимости от температуры, можно определить температуру, достигнутую при нагреве. К таким приборам относятся жидкостные термометры расширения, в том числе ртутные и спиртовые, в которых расширение ртути или спирта при нагреве значительно больше расширения стекла. Изготавливают также термометры, определяющие изменение температуры по расширению твердых тел это дилатометрические и биметаллические термометры, применение которых основано на неодинаковом расширении разных металлов. Для лабораторных целей чаще всего применяют жидкостные термометры вследствие их простоты и достаточной точности измерений. Ртутные термометры применяют для измерения температур от —30 до -1-550°С, спиртовые — главным образом для измерения низких температур (до —65° С).  [c.15]


Самым распространенным прибором дпя измерения изменения объема фактически является стандартный термометр, применение которого более подробно обсуждается ниже при описании приборов для измерения температуры.  [c.18]

Температура может быть измерена при помощи различных термометрических устройств (термометров), применение которых основывается на том, что два соприкасающихся тела через некоторое время приходят к состоянию теплового равновесия, т. е. принимают одинаковую температуру. Температуру отсчитывают по шкале температур. Шкала температур устанавливается делением разности показаний термометра в двух произвольно выбранных постоянных температурных точках на некоторое число равных частей, называемых градусами. Для измерения температур более высоких или более низких, чем выбранные температурные точки, с обеих сторон шкалы  [c.5]

Для лучшей передачи тепла термометру кольцевой зазор между стенкой защитной гильзы и термобаллоном должен быть заполнен при измерении температуры до 150°С машинным маслом, а при измерении более высокой температуры — медными или чугунными опилками. Высота заполненной части гильзы должна равняться длине термобаллона. Чрезмерное заполнение гильзы маслом или опилками понижает точность измерения из-за дополнительного оттока по ним тепла и увеличивает тепловую инерцию (запаздывание показаний) термометра. Применение для заполнения защитных гильз ртути запрещается ввиду ее токсичности.  [c.110]

Цель данной книги — изложение основных принципов термометрии в интервале от 0,5 до приблизительно 3000 К. В течение последних 25 лет по этому вопросу накоплен весьма богатый опыт, и настало время объединить полученные результаты и обсудить достигнутые успехи. Большая часть работ последних лет относилась к низкотемпературной термометрии ниже приблизительно 30 К и их результаты послужили основой Предварительной температурной шкалы 1976 г. от 0,5 до 30 К. Таким образом, температура 0,5 К оказалась удобной нижней границей интервала температур, обсуждаемого в книге. Верхняя граница не обладает такой же определенностью, поскольку термометрия по излучению, рассматриваемая в гл. 7, может быть в принципе распространена на сколь угодно высокие температуры и достаточно лишь теплового равновесия в системе, температура которой измеряется. При всем разнообразии условий в термометрии, охватывающей интервал от температур жидкого гелия до точки плавления платины, общими являются требования теплового равновесия и теплового контакта с термометром. Эти требования неизменно присутствуют при всех термометрических работах и всех температурах на протяжении данной книги. Ясное понимание физических основ каждого из различных методов термометрии представляется обязательным для детального обсуждения их принципов, точности, интервала применения и ограничений. По этой причине каждой из основных глав предпослано краткое изложение физических основ метода в той мере, в какой это требуется для теории и практики термометрии.  [c.9]


Для правильного понимания термометрии очень важно ясно представлять себе, что понимается под тепловым равновесием и тепловым контактом. Мы определим оба понятия, исходя из представлений, которые, строго говоря,справедливы лишь в некотором идеализированном мире, где возможно и изолировать некоторую систему и в то же время наблюдать ее приближение к конечному состоянию теплового равновесия. Однако и в реальном мире можно, соблюдая необходимые предосторожности, сколь угодно близко подойти к идеализированным условиям, и это служит одной из основ для применения классической термодинамики. Всегда можно представить себе такую реальную систему, которая в одном или нескольких отношениях (но не во всех) приближается к тем идеальным системам или условиям, для которых формулируются основные законы термодинамики. В этих случаях все предсказания классической термодинамики подтверждаются без исключения.  [c.13]

Важное значение трудов Фаренгейта заключается в том, что он создал как стабильные термометры, так и воспроизводимые шкалы. Он не только первым предложил шкалы с двумя фиксированными точками, но первым нашел применение для хороших термометров.  [c.32]

Применение акустического термометра  [c.110]

Интенсивное изучение методов и техники точной реализации точек плавления и затвердевания металлов было проведено авторами работ [47—50] и [52—56]. Предел воспроизводимости, достигнутый при реализации точек затвердевания металлов, определяется скорее совершенством термометров, используемых для фиксации переходов, чем самими металлами. Необходимость обеспечить достаточную глубину погружения термометра в среду с измеряемой температурой является сложной проблемой (см. гл. 5). В зависимости от конструкции термометра требуется его погружение в зону однородных температур в пределах от 10 до 20 см, чтобы чувствительный элемент в пределах 0,5 мК соответствовал температуре окружения. Поскольку разница АТ между температурой чувствительного элемента и температурой окружения экспоненциально уменьшается с глубиной погружения, нет больших различий в глубине погружения для точки таяния льда, точки затвердевания олова и даже золота. Увеличение глубины погружения для разных конструкций термометров на 1,5—3 см приводит к уменьшению АТ примерно в 10 раз. В точках затвердевания металлов обычно можно обеспечить достаточную глубину погружения, однако при измерении платиновым термометром сопротивления температур других объектов всегда важным ограничением является однородность их температур. Поэтому выше 500 °С платиновым термометром трудно измерить температуру тела с точностью лучше 50 мК. Отметим в этой связи эффективность применения тепловых трубок для увеличения области очень однородной температуры.  [c.169]

С момента появления первых термометров сопротивления и работы Каллендара по платиновым термометрам термометрия по сопротивлению претерпела существенные изменения. Наряду с классическими платиновыми термометрами сопротивления, применяемыми для измерений с большой точностью и во все возрастающем диапазоне температур, в настоящее время в промышленном масштабе используются проволочные элементы из платины, меди или никеля, а также печатные толстопленочные платиновые элементы. В диапазоне комнатных температур хорошо зарекомендовали себя точные и недорогие термисторы. В научных исследованиях при низких температурах используются термометры сопротивления с чувствительными элементами из сплава родия с железом, германия, углерода и стекло-углерода. Во многих случаях промышленных применений термометры сопротивления как основной инструмент контроля процесса вытесняют термопары. При температурах ниже 700 °С большинство промышленных термометров сопротивления сейчас более компактны и надежны, чем термопары. Кроме того, все более широкое применение микропроцессоров в составе приборов позволяет быстрее и эффективнее, чем было возможно прежде, использовать информацию, содержащуюся в сигнале от термометра.  [c.186]


Очевидно, что для правильного использования термометров сопротивления нет необходимости в детальном понимании процессов электропроводности. Однако исследования, направленные на улучшение воспроизводимости результатов измерений, расширение диапазона применения термометров, едва ли будут эффективными без общего знакомства с теоретическими основами их работы. Прежде чем приступить к описанию характеристик и практического использования основных типов термометров сопротивления, рассмотрим кратко теорию электропроводности чистых металлов, сплавов и полупроводников.  [c.186]

Данные, свидетельствующие о влиянии примесных стоков на скорость отжига вмороженного сопротивления, приведены на рис. 5.18. И здесь термометры, изготовленные из особо чистой платины, ведут себя иначе, чем термометры из менее чистой платины у последних вмороженное сопротивление меньше, а скорость отжига выше. Это один из тех редких случаев, когда применение самого лучшего материала не приводит к получению самого лучшего термометра. Исходя из величины вмороженного сопротивления, нужно считать, что платина, используемая в высокотемпературных термометрах сопротивления, должна иметь меньшее значение W (100°С), чем платина, используемая в лучших термометрах, применяемых до 630 °С. Следует учитывать, что количество примеси, необходимое для уменьшения W (100°С) от 1,39276 до 1,39229, очень невелико и зависит от конкретного типа примеси. Если в качестве примеси используется железо, то достаточно его концентрации  [c.217]

Применение этого уравнения для конкретного термометра требует градуировки последнего при 0 °С, в точке кипения воды (или точке плавления олова) и в точках затвердевания цинка, серебра и золота. Значения (480,081 °С) и W (630,74 °С) получаются расчетным путем из интерполяционного уравнения (5.23).  [c.219]

Измерение температуры скоростного газового потока имеет очень большое значение для авиастроения, однако здесь не место для подробного обсуждения этой проблемы. Читатель может обратиться к специальным трудам [41, 42], где дается исчерпывающий разбор данного вопроса. Как одна из областей применения технических термометров сопротивления, измерение температуры воздуха за бортом самолета в полете представляет собой любопытный контраст по сравнению с измерением температуры в условиях теплоэлектростанции.  [c.228]

Важно подчеркнуть, что достижение высокой точности у технических термометров сопротивления требует применения тех же принципов, которые лежат в основе конструирования самых точных эталонных термометров. Дополнительные требования, предъявляемые к техническим термометрам (прочность, невысокая стоимость, иногда также малые размеры), должны удовлетворяться без чрезмерного снижения требований к точности измерений, которая зависит от качества теплового контакта с объектом измерения, отсутствия механических напряжений на чувствительном элементе, защиты от коррозии, возможности периодической поверки термометра.  [c.231]

Термопары очень широко применяются для измерения температуры в самых различных условиях. В этой главе будут рассмотрены лишь наиболее важные аспекты термометрии, использующей термопары. Термопара остается основным прибором для измерения температуры в промышленности, в частности в металлургии и нефтехимическом производстве. Прогресс в электронике способствовал в последнее время росту числа применений термометров сопротивления, так что термопару уже нельзя считать единственным и важнейшим прибором промышленного применения. Преимущества термометра сопротивления по сравнению с термопарой вытекают из принципа действия этих устройств. Термометр показывает температуру пространства, где расположен его чувствительный элемент, и результат измерения мало зависит от подводящих проводов и распределения температуры вдоль них. Термопара позволяет найти разность температур между горячим и холодным спаями, если измерена разность напряжений между двумя опорными спаями. Эта разность напряжений возникает в температурном поле между горячим и холодным спаями. Разность напряжений идеальной термопары зависит только от разности температур двух спаев, однако для реальной термопары приходится учитывать неоднородность свойств электродов, находящихся в температурном поле она и является основным фактором, ограничивающим точность измерения температуры термопарами.  [c.265]

Для практического применения термопар в термометрии, в частности при использовании Р1-67 в качестве стандартного электрода, интерес представляют только различия в термо-э.д.с. разных металлов и сплавов. Абсолютные значения термо-э.д.с. или коэффициент термо-э.д.с. конкретного материала менее важны. Поскольку, однако, величина термо-э.д.с. в сильной мере зависит от рассеяния электронов, эти данные весьма интересны для теории. Существует абсолютная шкала термо-э.д.с., основанная на электроде из свинца, материала с очень малой величиной термо-э.д.с. Идеальным стандартным материалом был бы такой, у которого термо-э.д.с. равна нулю. Такой стандартный  [c.276]

В термометрии излучения в отличие от термометрии, основанной на применении термопары или термометра сопротивления, можно использовать уравнения в явном виде, которые связывают термодинамическую температуру с измеряемой величиной (в данном случае со спектральной яркостью). Это возможно потому, что тепловое излучение, существующее внутри замкнутой полости (излучение черного тела), зависит только от температуры стенок полости и совсем не зависит от ее формы или устройства при условии, что размеры полости намного больше, чем рассматриваемые длины волн. Излучение, выходящее из маленького отверстия в стенке полости, отличается от излучения черного тела лишь в меру того, насколько сильно отверстие нарушает состояние равновесия в полости. В тщательно продуманной конструкции это отличие может быть сделано пренебрежимо малым, так что равновесное излучение черного тела становится доступным для измерений. Таким образом, методы термометрии излучения позволяют в принципе измерить термодинамическую температуру с очень высокой точностью, что будет кратко рассмотрено в разд. 7.7.  [c.309]


Главная трудность при использовании оптической термометрии за пределами поверочных лабораторий состоит в измерении температуры тела, излучательная способность которого неизвестна. В большинстве промышленных применений измерение температуры черного тела — скорее исключение, чем правило. Значительно более вероятно, что объект, температуру которого необходимо измерить, представляет собой либо чистую свободно излучающую металлическую поверхность, либо частично окисленную металлическую поверхность, смесь расплавленного металла и шлака, частично затемненную дымом, или даже полупрозрачный объект, такой, как расплавленное стекло. Встречаются как чисто зеркальные, так и почти диффузные поверхности. Первые во многих отношениях проще, однако, как  [c.383]

К сожалению, не существует ни одного метода оптической пирометрии, который мог бы охватить весь набор встречающихся ситуаций. Однако разработаны различные подходы, каждый из которых способен преодолеть одну или две упомянутые выше трудности Выбор м,етода сильно зависит от конкретных особенностей применения и поэтому все, что изложено ниже,— это некоторые общие руководящие принципы, касающиеся основ различных методов. Характеристики большинства приборов, разработанных для частых применений, можно найти в трудах важнейших симпозиумов по термометрии, указанных в библиографии.  [c.384]

Температура может быть измерена при помощи различных термометрических устройств (термометров), применение которых основывается на том, что два соприкасающихся тела через некоторое время приходят к состоянию теплового равновесия, т. е. принимают одинаковую температуру. Отсчет температуры производится по шкале температур. Шкала температур уста-павлипается путем деления разности показаний термометра в двух произвольно выбранных постоянных температурных точках на некоторое число равных частей, называемых градусами. Для измерения температур более высоких или более низких, чем выбранные температурные точки, с обеих сторон шкалы наносят добавочные деления той же величины. Так как выбор постоянных температурных точек и цены деления шкалы является произвольным, то может быть множество различных шкал температуры.  [c.11]

Наиболее существенными источниками погрещностей измерений разности температур калориметрическим термометром являются неизбежные ощибки, свяванные с ивмерением сопротивлений термометра и влияние термической инерции самого термометра. Применение электроизмерительной аппаратуры высокого класса и тщательное проведение измерений позволяют свести ощибки, обусловленные измерением сопротивлений, до тысячны.х долей градуса. Оценить порядок величины погрешности, обусловленной влиянием термической инерции термометра, не представляется возможным. Как бы мала ни была инерция калориметрического термометра, при значительной скорости протекания калориметрического опыта, ее влияние оказывается весьма ощутимым. Это обстоятельство кладет известный предел современной точности калориметрических измерений.. Многочисленные исследования, проведенные до сего времени с целью разработать методы учета влияния термической инерции при калориметрических измеррлниях, не привели к должным результатам. Сложность задачи заключается не столько в большой скорости калориметрического процесса, сколько в неопределенности вида кривой изменения температуры среды. Вид этой кривой зависит от многих факторов, и решить задачу в общем виде на основе современной теории теплообмена пока не удалось.  [c.118]

Отмеченные выше результаты работ с магнитными термометрами и газовым термометром НФЛ позволили найти, а затем устранить термодинамическое несоответствие известных температурных шкал по давлению паров Не и Не с температурной шкалой, лежащей выше 13,81 К- Недавно в КОЛ разработаны новые таблицы зависимости давлений насыщенных паров гелия от температуры, соответствующие температурам по ПТШ-76. Представляется весьма вероятным, что новая МПТШ будет иметь своей основой для воспроизведения температур ниже 4,2 К температурную зав-исимость давления паров гелия вплоть до температур порядка 0,5 К. В качестве реперных температур для этого интервала возможно также применение переходов сверхпроводник-нормальный металл в чистых веществах. Однако исследования последних лет показали, что эти устройства требуют чрезвычайно осторожного обращения и приписанные температуры переходов могут оказаться сдвинутыми на величину, превышающую 1 мК- Кроме того, материалы из разных источников обнаруживают различающиеся величины Тс, что затрудняет применение этого способа в МПТШ.  [c.7]

Наибольшие трудности встречает сегодня выбор метода воспроизведения будущей МПТШ в интервале 13,8—24 К. Традиционная схема с платиновым термометром, градуированным в реперных точках, неизбежно потребует применения точек по температурам кипения водорода со всеми их недостатками, поскольку здесь просто не существует тройных точек в числе, достаточном для точного вычисления поправочной функции. Отметим, что пока не удалось получить удовлетворительных результатов для тройной точки дейтерия вблизи 18 К. Это связано, по-видимому, с недостаточной изученностью процессов орто-пара конверсии. К этому добавляются характерные для измерений с платиновым термометром в этом интервале температур проблемы их стабильности. Преимущество традиционного метода состоит в возможности перекрыть большой интервал температур единственным и очень широко применяемым прибором, каким является платиновый термометр сопротивления.  [c.7]

До недавнего времени было принято считать, что для МПТШ обязательно, чтобы температуры в данном интервале воспроизводились только одним методом. Выполнение этого требования автоматически обеспечивает единство измерений температуры. Однако редакция МПТШ-68 1975 г. допускает при градуировке платиновых термометров сопротивления использовать с равным правом тройную точку аргона пли точку кипения кислорода. В настоящее время нет никаких указаний на то, что такая двойственность привела к заметным расхождениям результатов измерений. Опыт успешной эксплуатации ПТШ-76, где с равным правом допускается воспроизводить шкалу несколькими весьма различными, но хорошо исследованными методами, также позволяет считать указанные выше формальные требования неоправданно жесткими. Можно полагать поэтому, что разумное отступление от метрологического пуризма и применение на равных основаниях обоих указанных выше методов воспроизведения МПТШ от 13,81 до 24 К не сможет привести к экспериментально ощутимым потерям в единстве измерений температуры.  [c.8]

В начале 17 в. мало что было известно о теплоте и температуре основные представления в то время еще базировались на медицинских трактатах Галена (130—200 н. э.). Его клиническая термометрия основывалась на идеях Аристотеля, и он полагал, что люди различаются по пропорциям теплоты, холода, влажности и сухости. Интересно отметить, что он предложил эталон нейтральной температуры,. для которого использовалась смесь из равных частей кипящей воды и льда, причем каждому из этих компонентов он приписывал четыре градуса тепла и четыре градуса холода соответственно. До нас не дошло никаких сведений о способах применения такого эталона. (Этим методом можно было получить температуру около 10 °С.) Спустя более тысячелетия после Галена, в 1578 г. другой врач, Хаслер Бернский в своем труде De logisti a medi a, следуя Галену, приписывал своим лекарственным смесям различные градусы тепла и холода. Для составления своих рецептов он использовал температурную щкалу, содержащую, по Галену, четыре градуса тепла, четыре градуса холода и нуль между ними. Он ввел также щкалу широт, предположив, что  [c.28]


В 1889 г. 1-я ГКМВ утвердила принятую МКМВ в 1887 г. шкалу водородного газового термометра постоянного объема, основанную на реперных точках плавления льда (О °С) и кипения воды (100 °С) и получившую название нормальной водородной шкалы в качестве международной практической шкалы. В описании шкалы указывалось начальное давление заполнения (1 м рт. ст. при о °С) и никаких поправок на отклонение свойств водорода от идеального газа не вводилось. По этой. причине шкала была названа практической . Она, очевидно, и не была термодинамической, поскольку наблюдалась зависимость результатов измерений от свойств рабочего газа. В гл. 3 будет подробно рассмотрено, каким образом отклонения от свойств идеального газа учитываются в газовой термометрии. Здесь же следует подчеркнуть, что для газового термометра постоянного объема, калиброванного в двух точках и примененного для интерполяции между ними, как это сделал Шаппюи, погрешности, вызванные неидеальностью газа, скажутся лишь в меру изменения самой неидеальности между реперными точками. Для водорода эти изменения от О до 100 °С неве-  [c.39]

С. НФЛ первоначально возражала против этого и поддерживала исходные предложения Каллендара о применении платинового термометра вплоть до точки золота. Позиция НФЛ была изменена в связи с трудностью в 20-х годах изготовления достаточно чистого сплава платины с родием. Достойно сожаления, особенно в наши дни, что три лаборатории в то время приняли предложение БЭ. Ниже в этой главе будет видно, какие большие усилия предпринимали и продолжают предпринимать национальные лаборатории, и особенно НБЭ, чтобы исключить термопары в качестве инструмента, определяющего МПТШ  [c.43]

При измерении величин Р и К принципиально необходимо вводить поправку на вредный объем, гидростатическую поправку, возникающую из-за переменной плотности газа по длине трубки для измерения давления и на термомолекулярное давление. Последняя из этих поправок обусловлена потоком частиц газа вдоль трубки, передающей давление, и является функцией давления, разности температур между концами трубки и состояния ее внутренней поверхности. На рис. 3.8 приведены величины всех трех поправок для низкотемпературного газового термометра Берри. Для газового термометра на интервал высоких температур одной из самых существенных является поправка на вредный объем. Это обусловлено тем, что в формулу (3.24) для вычисления поправки на вредный объем входят элементарные объемы участков трубки, которые содержат газ с высокой плотностью. В случае газовой термометрии при высоких температурах это те части трубки, передающей давление, которые находятся при комнатной температуре. Во время эксперимента необходимо самым тщательным образом следить за тем, чтобы температура участков соединительной трубки,которые находятся при комнатной температуре, оставалась постоянной. Кроме того, необходимо контролировать изменения объема при открывании и закрывании вентилей. Измерение температуры и объема соединительной трубки и вентилей с необходимой точностью требует применения довольно сложных экспериментальных методов и является одним из основных источников погрещности газовой термометрии в области высоких температур. В низкотемпературной газовой термометрии газ, имею-  [c.93]

Пятый и последний метод шумовой термометрии может применяться только при низких температурах. Его принцип основан на включении в цепь с очень низкой индуктивностью и сопротивлением контакта Джозефсона для получения так называемого резистивного СКИПа (сверхпроводящего квантового интерференционного прибора). Существуют и другие способы применения контакта Джозефсона в щумовой термометрии, например использование магнетометра [34]. Однако резистивный СКИП в отличие от других подобных приборов позволяет  [c.119]

Область применения шумового термометра со СКИПом может быть расширена до 20 К. Однако на практике большинство работ выполнено в области очень низких температур, ниже 0,5 К и вплоть до нескольких милликельвинов [67]. Для описанных шумовых и других первичных термометров в этом диапазоне очень низких температур не было найдено систематических расхождений результатов, превышающих 0,3 мК-  [c.122]

В магнитной термометрии широко применяются такие соли, как церий-магниевый нитрат (ЦМН), хромметиламмониевые квасцы (ХМК) и марганце-аммониевый сульфат (МАС). Первая из них, ЦМН, Се2Мдз(Ы0з)1224Н20, применяется при температурах ниже 4,2 К, так как чувствительность ее низка, а первое возбужденное состояние соответствует 38 К. ЦМН обладает гексагональной структурой и его магнитные свойства сильно анизотропны. Несмотря на это, величина Д очень мала, приблизительно 0,27 мК. Восприимчивость в направлении, параллельном гексагональной оси, хи много меньше, чем восприимчивость в перпендикулярном направлении х - Восприимчивость хх также мала, поскольку мал момент иона, 7=1/2, а также вследствие того, что ионы в кристаллической решетке расположены на относительно больших расстояниях. Последнее обстоятельство приводит к тому, что ЦМН достаточно точно подчиняется закону Кюри и является одной из причин широкого применения этой соли для термометрии ниже 1 К-  [c.126]

Оптическая пирометрия, пирометрия по излучению, инфракрасная пирометрия, пирометрия монохроматического или суммарного излучения — таковы некоторые наименования методов термометрии, основанных на измерении теплового излучения В этой области наметилась тенденция использовать слова пирометрия и термометрия в качестве синонимов, хотя применение слова пирометрия с его значением корня огонь к инфракрасным измерениям тепературы ниже 100 °С представляется несколько неуместным.  [c.309]

Точность, с которой может быть использован пирометр с ис-чезаюшей нитью для измерения температуры, вполне достаточна для большинства практических применений. Во всяком случае, ограничивающим фактором чаще служит неопределенность в излучательной способности объекта, температура которого подлежит измерению. Однако, несмотря на удобство, точность и надежность, оптический пирометр с исчезающей нитью имеет один существенный недостаток его использование требует активного участия квалифицированного наблюдателя. Его нельзя использовать в тех приложениях, которые нуждаются в непрерывных или быстрых измерениях, а также измерениях в недоступных или опасных ситуациях. По этой причине с самого начала некоторые оптические термометры объединялись с тепловыми, термоэлектрическими, фоторезисторными и фо-тоэмиссионными детекторами. Среди них наиболее удачными оказались оптические термометры с кремниевыми фотоэлементами. Высокая прочность и долговременная воспроизводимость  [c.310]

Шум и другие свойства фотоумножителей, существенные для оптической термометрии, были широко исследованы в работах [18—20, 22, 23, 29]. Выбор способа работы фотоумножителей методом постоянного тока [44] или методом счета фотонов в основном зависит от вкуса потребителя. Не существует никаких заметных преимуществ одного метода перед другим. В обоих случаях необходимо, чтобы фотоумножителю не мешали избыток шума, усталость или нелинейность. Метод счета фотонов имеет, однако, преимущество в том, что зависимость амплитуды сигнала от усиления меньще и ослабляется эффект утечек тока внутри фотоумножителя или около его цоколя. Кроме того, сигнал имеет цифровую форму, которая облегчает прямую связь с ручной цифровой обработкой и с контрольно-компьютерной системой. В обоих методах — на постоянном токе и методе счета фотонов — критичным является контроль температуры фотоумножителя, так как спектральная чувствительность (особенно вблизи длинноволновой границы), а также темновой ток зависят от температуры. Фотоумножители с чувствительным в красной области спектра фотокатодом 8-20, такие, как ЕМ1-9558 (щтырьковая замена для ЕМ1-9658 фотоумножителя 8-20), для понижения темнового тока должны работать при температуре примерно —25 °С. Применение чувствительного в красной области фотокатода позволяет работать с длинами волн примерно до 800 нм, хотя если прибор предназначен исключительно для воспроизведения МПТШ-68 выше точки золота, такие длины волн требуются редко.  [c.377]


Смотреть страницы где упоминается термин Термометрия применение : [c.7]    [c.44]    [c.55]    [c.56]    [c.94]    [c.98]    [c.112]    [c.115]    [c.123]    [c.125]    [c.130]    [c.168]    [c.366]   
Температура (1985) -- [ c.125 ]



ПОИСК



Применение ртутных термометров в калориметрии

Применение термометров сопротивления в калориметрии

Применения интерференционной термометрии

Применения термометрии по сдвигу края поглощения

Термометр

Термометр сопротивления ( Электрическое сопротивление металлов как .термометрический параметр. Температурные области применения термо- j метров сопротивления

Термометрия

Термометры для специальных применений



© 2025 Mash-xxl.info Реклама на сайте