Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предельный неустойчивый

Характер движения и структура слоя при первом режиме движения были рассмотрены ранее ( 9-5, 9-6). Остановимся на режимах, характерных разрывом слоя. При увеличении скорости до величин, близких к предельной, предвестники разрыва слоя наблюдались в пристенной зоне. Эти местные разрывы, локальные воздушные мешки, имеющие в основном продольную протяженность, как правило, вызывались некоторым местным отличием состояния поверхности стенок. Дальнейшее небольшое повышение скорости до Уцр увеличивало частоту появления местных разрывов до их слияния по периметру канала. Возникал пробковый разрыв слоя, который также периодически исчезал, уступая место неустойчивому плотному слою. Наконец увеличение скорости сверх предельного значения полностью разрушало остатки предельного равновесия сил в слое и приводило к полному распаду плотной среды в гравитационно падающую взвесь с высокой концентрацией частиц.  [c.302]


Отмеченный кризис кипения жидкости в микропленке имеет термодинамическую природу - жидкость становится термодинамически неустойчивой и самопроизвольно распадается. Соответствующая температура предельного перегрева является физической характеристикой жидкости  [c.82]

Наряду с устойчивыми предельными циклами фазовый портрет автоколебательной системы может содержать также неустойчивые предельные циклы, для которых /г > 0. Двигаясь в окрестности неустойчивого предельного цикла, изображающая точка постепенно удаляется от него. Обычно такой цикл играет роль границы между областями с различным поведением фазовых траекторий.  [c.47]

При а > 1 при обратном изменении к рождается неустойчивый предельный цикл.  [c.370]

Считается, что если после устранения причин, вызывающих отклонение, система возвращается к исходному состоянию равновесия, то это ее состояние считается устойчивым если не возвращается -- неустойчивым. Такой подход к анализу устойчивости позволяет определить значения внешних сил, при которых устойчивое положение равновесия становится неустойчивым. Эти силы называют критическими и рассматривают как предельные для данной конструкции. При расчете на устойчивость рабочая  [c.146]

Рассмотренный в [38] универсальный параметр инвариантности и предельная повреждаемость означают достижение бифуркационной неустойчивости системы, границы которой несут фундаментальную информацию о свойствах среды, в данном случае предельно поврежденного материала.  [c.319]

Рассмотрим потерю устойчивости периодическим движением при переходе мультипликатора через —1. Равенство л = —1 означает, что начальное возмущение через интер)зал времени То меняет знак, не меняясь по абсолютной величине еще через период То возмущение перейдет само в себя. Таким образом, при переходе ц через значение —1 в окрестности предельного цикла с периодом То возникает новый предельный цикл с периодом 2То — бифуркация удвоения периода ). На рис. 20 условно изображены две последовательные такие бифуркации на рисунках а, б сплошными линиями показаны устойчивые циклы периодов 2То, 47 о, а штриховыми — ставшие неустойчивыми предыдущие циклы.  [c.170]

С изменением термодинамических сил, действующих на систему, изменяются различные характеристики фазового перехода первого рода (ФП I рода). Так,, при повыщении температуры и давления в системе жидкость — пар уменьшаются удельная теплота перехода и области метастабильных п неустойчивых состояний (см. рис. 31). Предельным случаем ФП I рода является критический переход. В критическом состоянии спинодаль и бино-даль сливаются в одну точку, удельные объемы фаз становятся одинаковыми, а фазы — тождественными. Критическое состояние определяется тем, что детерминант устойчивости и ИКУ равны нулю Dy = 0, (pP/<3V )t = 0, (<Э7 /55)р = 0.  [c.174]


Из первого неравенства (3.44), называемого также условием механической устойчивости, следует, что увеличение объема тела при постоянной температуре всегда сопровождается уменьшением давления. Это условие вполне очевидно, так как в противном случае, т. е. при др дУ)т >0, состояние тела было бы абсолютно неустойчивым, поскольку малейшее уменьшение объема, например, при случайном изменении внешнего давления, приводило бы не к возрастанию давления тела (и тем самым к противодействию внешнему воздействию, как это должно иметь место в состоянии устойчивого равновесия), а к уменьшению собственного давления тела, в результате чего превосходящим давлением окружающей среды тело было бы сжато до предельного объема.  [c.115]

Физическая природа пульсаций объясняется неустойчивостью обтекания затупленного тела с достаточно короткой иглой. Спектр обтекания при этом периодически изменяется. В одном предельном положении, когда криволинейный скачок уплотнения перед телом максимально приближен к его поверхности, неустойчивость связана с образованием отрыва на поверхности иглы перед скачком. Зона отрыва перемещается вверх по потоку, и, когда она достигает острия иглы, оторвавшийся поток присоединяется к поверхности тела под большим углом. Это сопровождается возникновением криволинейного скачка уплотнения в области присоединения, угол которого у поверхности тела близок к я/2. Из-за неблагоприятных условий присоединения, связанных с большим давлением за скачком, большая часть газа, попадающая в застойную зону из области смешения, остается в ней. В связи с этим поперечные размеры застойной зоны увеличиваются, что продолжается до тех пор, пока разделяющая линия тока не попадет на излом образующей. В результате газ истекает из застойной зоны и спектр потока возвращается к первоначальному состоянию.  [c.385]

При высоких давлениях, когда скорость изменения пузырька ничтожна (Ja < 1), определяющую роль в распределении давлений в окружающей пузырек жидкости играют массовые силы. Здесь естественно обратиться к рассмотренным в гл. 2 задачам гидростатики газожидкостных систем, в которых анализируется возникновение неустойчивости осесимметричных равновесных поверхностей раздела при достижении определенного (критического) объема парового пузырька. При Ja 1 распределение давления в окрестности растущего пузырька обусловлено не только гидростатикой, но и движением расталкиваемой пузырьком жидкости. В этих условиях модель, позволяющая рассчитывать размер пузырька в момент отрыва, должна объяснять, почему, начиная с некоторого этапа эволюции пузырька, уравнение (6.45) продолжает выполняться лишь при условии отделения парового объема от стенки. Таким образом, естественно в первую очередь рассмотреть указанные два предельных случая отрыв пузырьков при Ja < 1 (гидростатическое приближение) и Ja 1 ( инерционная схема отрыва ),  [c.274]

Будем полагать, что в момент начала процесса неустойчивого деформирования за счет наличия пор нагруженность материала такова, что его реология начинает подчиняться закону упругопластического, а не упруговязкого деформирования. При этом принимается, как и в подразделе 2.2.2, что локальное изменение деформации в характерном сечении не приводит к изменению соотношения компонент тензора напряжений (а следовательно, и параметров qn = a fOi и q,n omfoi) в структурном элементе. Окончательно условие достижения критической деформации при межзеренном разрушении формулируется аналогично условию предельного состояния в случае внутризеренного вязкого разрушения  [c.156]

Такой подход к анализу устойчивости позволяет для абсолютного большинства упругих систем определить такие значения внешних сил, при которых устойчивое положение равновесия становится неустойчивым. Такие силы называются критическими и рассматрива-[отся для конструкции как предельные.  [c.415]

Если р соответствует устойчивому состоянию равновесия, то на плоскости qq — устойчивый предельный цикл все соседние интеЕральные кривые — спирали, накручивающиеся на этот предельный цикл. Если же р/, соответствует неустойчивому состоянию равновесия, то на плоскости qq — неустойчивый предельный цикл.  [c.126]


Эйлерова точка бифуркации для упругих систем может быть устойчивой (стержни, пластины) и неустойчивой (оболочки, панели) (см. рис. 15.1—15.3). Послебифуркацнонное поведение упругопластической системы в процессе ее нагружения из устойчивых точек бифуркации может обнаружить резервы послебифуркационной устойчивости и прочности при выпучивании. В силу этого различают докритический и послекритический процессы выпучивания. Критическое состояние имеет место в предельных точках точках бифуркации Пуанкаре), в которых имеет место условие dp/d/=0 или  [c.322]

Анализ выпучивания и устойчивости идеальных упругих и неупругих систем не является общим при решении вопроса об устойчивости конструкций и их элементов, поскольку последние обладают различного рода несовершенствами. Неустойчивость реальных конструкций и их элементов с несовершенствами наступает в предельных точках или точках бифуркации Пуанкаре точно так же, как и для идеальных систем с устойчивым послебифуркационным поведением, В связи с этим все начальные несовершенства формы и приложения нагрузок принимаются за возмущающие факторы с наложенными на них ограничениями, и об устойчивости исходного процесса нагружения идеальной системы судят по пребыванию системы с возмущенной формой в окрестности основного процесса. Следовательно, на процесс выпучивания системы с начальными несовершенствами, так же как на послебифуркационный процесс выпучивания идеальной системы, следует смотреть как на возмущенный процесс, с помощью которого исследуются устойчивость конструкции, которую стремятся всегда создавать как совершенную. Этот докритический процесс завершается потерей устойчивости в предельной точке (точке бифуркации Пуанкаре) и послекритиче-ским выпучиванием.  [c.322]

Так что в точке неустойчивости происходящая структурная перестройка связана со спонтанным изменением активационного объема, который при oo onsl увеличивается с ростом энергии активации элементарного объема. Из (4.8) следует, что исчерпание возможностей перестройки структуры, связанное с достижением предельного состояния при у = уотвечает хрупкому разру-  [c.270]

Таким образом, Vi удовлетворяет системе однородных линейных дифференциальных уравнений с коэффициентами, являющимися функциями только от координат, но не от времени. Общее решение таких уравнений может быть представлено в внле суммы частных решений, в которых vi зависит от времени посредством множителей типа Сами частоты со возмущении не произвольны, а определяются в результате решений уравнений (26,4) с соответствующими предельным условиями. Эти частоты, вообще говоря, комплексны. Если имеются такие со, мнимая часть которых положительна, то будет неограниченно возрастать со временем. Другими словами, такие возмущения, раз возникнув, будут возрастать, т. е. движение будет неустойчиво по отношению к ним. Для устойчивости движения необ.хо-димо, чтобы у всех возможных частот со мнимая часть была отрицательна. Тогда возникающие возмущения будут экспоненциально затухать со временем.  [c.138]

На рис. 9.4,3 приведены графики изменения действительных и мнимых частей комплексных корней для предельного случая, когда С1=оо. С увеличением скорости потока мнимые части комплексных корней Р) и Рг убывают, а действительные части О и 02 равны нулю. При ш о (точка А) первая частота обращается в нуль и появляются два действительных (равных по модулю) корня оц и 0 2 разных знаков, т. е. ш о соответствует дивергенции трубки. В точке В действительные корни Оц и 012 становятся равными нулю и появляется опять 1р1, а 0 равно нулю до значений гео, соответствующих точке С. В точке С мнимые части двух комплексных корней сливаются (точка О), и появляется положительная действительная часть а ,2, т. е. точка С соответствует значению скорости потока Шс , при которой трубка становится динамически неустойчивой. Результаты, приведенные на графиках (рис. 9.4), получены совместно с А. В. Остроуховым.  [c.269]

Для оболочек с мягкими прослойками промежуточных размеров (Кр < к < к ) анализ исчерпания несущей способности на основании критериев потери устойчивости их пластического деформирования в процессе нагр> жения существенно усложняется. Фактически процедура учета описанных выше явлений, связанных с эффектом контактного упрочнения мягких прослоек, сводится к предварительному определению кривых v /(k) и S k) либо на основании обработки экспериментальных данных, либо расчетным путем по методикам /77/, после чего по соответ-ств тощим зависимостям /88/ находятся параметры Ер и т, позволяющие оценить предельное состояние конструкций по критериям потери пластической устойчивости. Однако, как будет показано несколько ниже, в целях прощения расчетньЕх методик по оценке нес> щей способности оболочковых конструкций можно пренебрегать данной процедурой уточнения процесса пластической неустойчивости конструкции в процессе их нагружения вследствие ее незначительного влияния на конечный результат.  [c.95]

При некотором значении р2=Р2та% скачок становится прямым и непосредственно за решеткой имеется равномерный дозвуковой поток ), направленный по пластинке, т. е. с нулевым углом отставания дальнейшее повышение противодавления (по сравнению с прямым скачком) оказывается невозможным — течение становится неустойчивым, и прямой скачок, перемещаясь вверх по потоку, делает невозможным заданное течение на бесконечности перед решеткой. Поэтому значение е, соответствующее прямому скачку, является максимально возможным, отвечающим режиму предельного дросселирования решетки при заданном числе Мь  [c.84]

И наконец, главное, к чему следует стремиться. Мы должны научиться pat4eTHbiM путем определять условия, при которых система из устойчивого состояния переходит в неустойчивое, определять количественно меру устойчивости. Принцип такого расчета достаточно ясен. Переход от устойчивого состояния к неустойчивому, как мы видели, определяется значением действующих сил. Силы, соответствующие такому переходу, называются критическими и могут рассматриваться для конструкции как предельные. Рабочая нагрузка должна составлять некоторую часть от критической.  [c.121]


Заметим, что струйное течение рассматриваемого типа (с мертвой зоной позади тела) экспериментально не осуществимо, так как границы струй неустойчивы и за обтекаемым телом образуются вихри. Однако, как будет показано в п. 10.2, такое течение является предельным случаем наблюдаемого в практике суперкави-тационного течения.  [c.253]


Смотреть страницы где упоминается термин Предельный неустойчивый : [c.85]    [c.13]    [c.49]    [c.50]    [c.50]    [c.58]    [c.59]    [c.60]    [c.114]    [c.114]    [c.130]    [c.131]    [c.70]    [c.118]    [c.157]    [c.157]    [c.160]    [c.171]    [c.665]    [c.30]    [c.30]    [c.155]    [c.325]    [c.89]    [c.90]    [c.92]   
Динамика машинных агрегатов на предельных режимах движения (1977) -- [ c.259 , c.292 ]



ПОИСК



Генерация цугов пикосекундных импульсов с предельно высокими частотами повторения использование модуляционной неустойчивости

Замечания об отыскании устойчивого и неустойчивого предельных режимов угловой скорости движения ведущего вала вариатора

Исследование поведения угловой скорости и ускорения звена приведения в случае большого пускового момента сил сопротивления. Устойчивый и неустойчивый предельные режимы

Неустойчивость

Предельный цикл неустойчивый

Предельный цикл неустойчивый устойчивый

Ра неустойчивое

Устойчивые и неустойчивые предельные режимы движения машинного агрегата



© 2025 Mash-xxl.info Реклама на сайте