Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент инерции материальной точки относительно неподвижной оси

Момент инерции материальной точки относительно неподвижной оси равен произведению массы точки на квадрат ее расстояния до оси  [c.219]

Уравнение (108.5) показывает, что в любой момент времени для всякой несвободной механической системы геометрическая сумма главных моментов задаваемых сил, реакций связей и сил инерции материальных точек системы относительно любого неподвижного центра равна нул о.  [c.284]


Можно получить первые интегралы дифференциального уравнения вращения твердого тела вокруг неподвижной оси, используя теорему об изменении кинетической энергии системы материальных точек. Это осуществимо в задачах, где главный момент внешних сил постоянен либо зависит от угла поворота твердого тела, а в число данных и неизвестных величин входят момент инерции твердого тела относительно оси вращения, внешние силы, приложенные к твердому телу, угловое перемещение, угловые скорости твердого тела в начале и в конце этого углового перемещения.  [c.541]

Можно упростить интегрирование дифференциальных уравнений движения, используя теорему об изменении кинетической энергии системы материальных точек в задачах, где главный вектор и главный момент сил, приложенных к твердому телу, постоянны либо зависят от положений точек (угла поворота) твердого тела, а в число данных и неизвестных величин входят масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, силы, приложенные к твердому телу, перемещения точек твердого тела (угловые перемещения), скорости точек твердого тела (угловые скорости) в начале и в конце этих перемещений.  [c.542]

Третье уравнение (теорема об изменении главного момента количеств движения системы материальных точек в относитель 10м движении по отношению к центру инерции, записанная для случая вращения твердого тела вокруг подвижной оси, движущейся поступательно) описывает относительное вращательное движение вокруг оси, проходящей через центр инерции С твердого тела перпендикулярно к неподвижной плоскости.  [c.252]

Моментом инерции тела относительно неподвижной оси называется сумма моментов инерции отдельных его частиц, которые могут рассматриваться как материальные точки  [c.219]

Пример расчетно-графического задания. Вагонетка массы М, имеющая четыре колеса массы т, радиуса г и с осевым моментом инерции / каждое, двигаясь под уклон Р со скоростью сцепляется с двумя пружинами, расположенными первоначально под углом ао каждая к направлению движения вагонетки и имеющими жесткости С и длины /о в недеформированном положении. Пружины надеты на однородные стержни массы Шх и длины /1 каждый. Эти стержни скользят в направляющих, поворачивающихся вокруг неподвижных осей и имеющих моменты инерции /н относительно этих осей и диаметры В. На каждом стержне на расстоянии /2 от конца находится материальная точка массы гп2 (рис. 1).  [c.82]


Момент импульса. Тензор инерции. Момент импульса тела относительно неподвижной точки — важнейшее понятие в динамике вращательного движения твердого тела. Он определяется так же, как и для системы материальных точек  [c.22]

Из условия равновесия сил в каждой точке твердого тела вытекают условия равновесия сил для тела в целом (т. е. равенство нулю их главного вектора R и главного векторного момента Мо относительно некоторого центра О). Наоборот, из условий равновесия сил для тела в целом не вытекает условия их равновесия в каждой точке тела если = Мо — О, т. е. твердое тело движется по инерции, то его центр тяжести С — либо в покое, либо движется прямолинейно и равномерно, а движение тела относительно точки С представляет эйлеров случай движения твердого тела вокруг неподвижной точки (гл. X, 2), при котором точки тела могут двигаться с ускорением, откуда вытекает Р + N Ф 0. В общем случае материальной системы из условий = Мо = О нельзя сделать никаких заключений ни о равновесии сил в каждой точке системы, ни о равновесии самой системы например, если рассмотреть всю Солнечную систему и пренебречь притяжением звезд, то для нее выполняются условия == Мо = О, а вместе с тем отдельные небесные тела Солнечной системы или тела у поверхности планеты могут двигаться по тем или иным законам.  [c.347]

Теорему о сохранении главного момента количеств движения материальной системы относительно неподвижной оси рекомендуется применять при рассмотрении движения материальной системы, в состав которой входит твердое тело, вращаюшееся вокруг этой оси. Если сумма моментов всех внешних сил системы относительно оси равна нулю, то можно получить соотношение между массами материальных точек, их скоростями, а также моментом инерции и угловой скоростью вращения твердого тела.  [c.245]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Уравнение (108.5) показывает, что в любой момент времени для всякой несвободней механическ>пг системы гсо кешрич скля ул мй гллекнт люментов за()г -ваемых ti.li, реакций связей и си.1 инерции материальных точек системы относительно любого неподвижного центра равна нулю.  [c.492]


В учебных задачах, как правило, встречаются не материальные точки, а твердые тела. В этом случае при вычислении импульса кинетического момента или кинетической энергии тела надо исходить из того, что пространственное твердое тело характеризуется массой М, положением центра масс S, тремя главными центральными направлениями е, е, е" и соответствующими главными центральными моментами инерции А, В, С. Пусть в некоторой неподвижной системе координат Oxyz точка S имеет радиус-вектор s = OS, и пусть угловая скорость тела относительно Oxyz разложена по (правому) главному реперу  [c.110]

ПРАВИЛО (Стокса длина волны фотолюминесценции обычно больше, чем длина волны возбуждающего света фаз Гиббса в гетерогенной системе, находящейся в термодинамическом равновесии, число фаз не может превышать число компонентов больше чем на два ) ПРЕОБРАЗОВАНИЯ [Галилея — уравнения классической механики, связывающие координаты и время движущейся материальной точки в движущихся друг относительно друга инерциальных системах отсчета с малой скоростью калибровочные — зависящие от координат в пространстве — времени преобразования, переводящие одну суперпозицию волновых функций частиц в другую каноническое в уравнениях Гамильтона состоит в их инвариантности по отношению к выбору обобщенных координат Лоренца описывают переход от одной инерци-альной системы отсчета к другой при любых возможных скоростях их относительного движения] ПРЕЦЕССИЯ — движение оси собственного вращения твердого тела, вращающегося около неподвижной точки, при котором эта ось описывает круговую коническую поверхность ПРИВЕДЕНИЕ системы <к двум силам всякая система действующих на абсолютно твердое тело сил, для которой произведение главного вектора на главный момент не равно нулю, приводится к динаме к дниаме (винту) — совокупность силы и пары, лежащей в плоскости, перпендикулярной к силе скользящих векторов (лемма) всякий скользящий вектор, приложенный в точке А, можно, не изменяя его действия, перенести в любую точку В, прибавив при этом пару с моментом, равным моменту вектора, приложенного в точку А скользящего вектора относительно точки В ) ПРИНЦИП (есть утверждение, оправданное практикой и применяемое без доказательства Бабине при фраунгоферовой дифракции на каком-либо экране интенсивность диафрагмированного света в любом направлении должна быть такой, как и на дополнительном экране )  [c.263]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]



Смотреть страницы где упоминается термин Момент инерции материальной точки относительно неподвижной оси : [c.235]    [c.241]    [c.248]    [c.713]   
Теплоэнергетика и теплотехника Общие вопросы Книга1 (2000) -- [ c.219 ]



ПОИСК



Инерции момент относительно оси

Материальная

Момент инерции

Момент инерции (относительно оси) точки

Момент инерции точки

Момент относительно оси

Момент относительно точки

Неподвижная точка

Точка инерции

Точка материальная



© 2025 Mash-xxl.info Реклама на сайте