Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан—Обработка

Титан—Обработка 318, 345 Титановые сплавы — Обработка 24, 63, 345, 664 Токарная обработка 33—63  [c.803]

Современные промышленные а-сплавы сравнительно малопластичны, не охрупчиваются при термической обработке. К сплавам этого класса относится чистый титан и сплавы титана с алюминием  [c.516]

Титан — тугоплавкий металл [температура плавления (1665 5) С], плотность 4500 кг/м . Временное сопротивление чистого титана = 250 МПа, относительное удлинение б =70 %, он обладает высокой коррозионной стойкостью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей. Поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40 %. Одпако титан имеет низкую жаропрочность, так как при температурах выше 550— 600 °С легко окисляется и поглощает водород. Титан хорошо обрабатывается давлением, сваривается, из него изготовляют сложные отливки, но обработка его резанием затруднительна.  [c.19]


Для получения требуемых механических свойств титановые сплавы подвергают термической обработке (отжигу, закалке и старению) в печах с защитной атмосферой. Титан и его сплавы используют для изготовления деталей самолетов, в химическом машиностроении, судостроении и других отраслях машиностроения.  [c.19]

Технически чистый титан марки ВТ1 подвергается всем видам механической обработки из него можно штамповать и ковать детали, ои сваривается, прокатывается, обрабатывается резанием.  [c.279]

Легирование титаном или ниобием. Легирование аустенит-ных сплавов небольшими количествами элементов, обладающих большим сродством к углероду, чем хром, предотвращает диффузию углерода к границам зерен. Уже имеющийся здесь углерод взаимодействует с титаном или ниобием, а не с хромом. Сплавы такого рода называют стабилизированными (например, марки 321, 347, 348). Они не проявляют заметной склонности к межкристаллитной коррозии после сварки или нагрева до температур сенсибилизации. Наилучшей стойкости к межкристаллитной коррозии при нагреве сплава до температур, близких к 675 °С, достигают в результате предварительной стабилизирующей термической обработки в течение нескольких часов при 900 °С [14, 19]. Эта обработка эффективно способствует переходу имеющегося углерода в стабильные карбиды при температурах, при которых растворимость углерода в сплаве ниже, чем при обычно более высокой температуре закалки.  [c.307]

Вместе с тем очень стойкие карбиды титана, вольфрама, ниобия, циркония практически не удается использовать в полной мере, так как они чаще всего образуются в виде избыточных фаз при кристаллизации и при термической обработке с основным твердым раствором не взаимодействуют. Поэтому такие элементы, как титан, ванадий, цирконий, ниобий, молибден, тантал и вольфрам, следует вводить с элементами, которые образуют с ними сложные карбиды и участвуют в процессах термической обработки.  [c.50]

Для устранения склонности сталей i МКК предложены различные способы, которые направлены на изменение их состава и структуры. Склонность к межкристаллитной коррозии снижают уменьшением содержания углерода в стали в процессе выплавки до 0.03 % и менее легированием стабилизирующими элементами, такими как титан и ниобий термической обработкой стали (аустенизация. стабилизирующий отжиг).  [c.87]

Среди алюминиевых сплавов, не упрочняемых термической обработкой, наибольшее распространение получили сплавы алюминия с марганцем в количестве 1—1,6 % Мп (сплавы марки АМц) и сплавы алюминия с магнием в количестве 0,5—7 % Mg (сплавы марки АМг, так называемые магналии). Магналии склонны к образованию крупного зерна, что устраняют модифицированием сплава титаном, ванадием, цирконием (табл. 21).  [c.36]


Если сплав со столбчатой структурой подвергнуть обработке в магнитном поле, т. е. получить анизотропию частиц выделения, то можно еще повысить магнитную энергию. Рекордная магнитная энергия получена на монокристалле и равна 48-10 дж/м (12,0-10 гс. э), В сплавах системы Fe—Ni—А1—Со коэрцитивная сила повышается при легировании этих сплавов титаном. Влияние титана на повышение коэрцитивной силы связано с измельчением зерна. В сплавах, содержащих титан, затруднено получение столбчатой структуры, следовательно, магнитная энергия их не высока. Однако специальным легированием сплавов, содержащих титан, можно добиться получения столбчатых кристаллов при кристаллизации. У таких сплавов наряду с высокой коэрцитивной силой достигается большая магнитная энергия.  [c.225]

Примеси мышьяка, сурьмы, кадмия, железа, никеля, кобальта, свинца, висмута, золота, галлия, кремния и цинка при содержании их до 1% мало понижают проводимость алюминия в отожженном состоянии, что объясняется образованием интерметаллидных ([заз. Примеси меди, серебра, магния влияют на проводимость в большей степени, а титан, ванадий, хром и марганец резко снижают ее, последнее объясняется образованием твердых растворов. Поэтому любая термическая обработка, повышающая концентрацию растворенного компонента, будет уменьшать проводимость.  [c.240]

Титан в виде порошка и тонкой проволоки может гореть в атмосфере азота, а тонкая титановая стружка, получаемая при механической обработке, способна к самовозгоранию.  [c.357]

Удвоенная прочность по сравнению с нелегированным титаном. Хорошая пластичность, включая изгиб. Ковка, прокатка и штамповка идут легче, чем у сплавов а или (сплавы р имеют лучшую пластичность при изгибе). Сравнительная простота массового производства. Возможность получения высокой прочности путем термической обработки  [c.371]

Обработка резанием. Обрабатываемость чистого ванадия подобна обрабатываемости холоднокатаной стали. Для получения хорошего качества поверхности при чистовой обработке следует применять большие скорости, малые сечения стружки и хорошие смазки. Ванадий обрабатывается легче, чем монель, никель, нержавеющие стали и титан, но труднее, чем медь, алюминии и латуни.  [c.494]

Термомеханическая обработка сплавов ОТ4 и ОТ4-1 системы титан— алюминий — молибден приводит к резкому возрастанию пластичности и вязкости этих материалов и, в отличие от сплава ВТЗ-1, к некоторому снижению их прочности. Максимальные значения характеристик пластичности закаленных сплавов ОТ4 и ОТ4-1 достигаются после 50% предварительной деформации, что также соответствует максимальному количеству остаточной (3-фазы [100].  [c.69]

Указанный дефект, давно обнаруженный в слитках такой стали, связанный с повышенным содержанием азота, вызывал при горячей механической обработке слитков грубые рванины, был устранен присадкой титана в хорошо раскисленный алюминием жидкий металл. В том случае, когда титан связывал основное количество азота в нитриды титана до затвердевания слитка, образования указанного дефекта не наблюдалось.  [c.11]

Химическое никелирование титана. Химическое никелирование титана используют для улучшения внешнего вида и условий пайки, но нанесение покрытий на титан затруднено окисной пленкой толщиной порядка 5-10 мкм Для удаления окисной пленки поверхность титана подвергают гидропескоструйной обработке, травлению или применяют оба этих метода  [c.31]

Классификация титановых сплавов по структуре затруднительна вследствие разнообразия их фазового состава и легирования. Если технически чистый титан и чистые а-сплавы можно достаточно надежно группировать по величине зерна, то уже в псевдо-а-сплавах, а тем более в (а-г )-сплавах структура сложна и, естественно, ее надо рассматривать в тесной связи с составом сплава и его термической обработкой, а еще лучше с термопластической "предысторией".  [c.152]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]


Результаты карбидного химического и фазового анализа показали, что после полного цикла термической обработки ванадий, титан и ниобий почти полностью находятся в карбид-  [c.42]

Действие этих компонентов заключается в измельчении микро- и макроструктуры, увеличении твердости аустенита за счет равномерного вкрапления в вязкую матрицу твердых мелкодисперсных карбидов, нейтрализации вредных примесей. В результате исследований отработаны оптимальный состав марганцовистой стали с применением комплексного легирования хромом, титаном и бором, а также режим термической обработки отливок.  [c.239]

Диффузионное хромирование позволяет получать покрытие, которое может содержать до 30% хрома. Толщина слоя в зависимости от способа получения и вида применяемой стали составляет 60—120 мкм. Для того чтобы предотвратить образование карбида хрома, рекомендуется применять стали с максимальным количеством углерода 0,08 7о или сталь, стабилизированную титаном. Диффузионное хромирование находит широкое применение для крепежных деталей благодаря исключительной коррозионной стойкости и легкому демонтажу болтовых соединений. Срок службы таких деталей в 5 раз больше срока службы оцинкованных деталей. Температура диффузионного процесса составляет 1200— 1300° С, и дополнительная термическая обработка целесообразна только для болтов, рассчитанных на высокие нагрузки. Предельная температура применения их составляет 800° С. Кратковременно болты могут работать при температуре до 1100°С (резкие изменения температуры не являются препятствием). Диффузионное хромирование используют также для повышения срока службы измерительного инструмента, форм для прессования стекла, для литья под давлением легких сплавов и т. д.  [c.83]

Технический титан поддается всем видам механической обработки штамповке, ковке, резке, сварке и прокатке. Титановые сплавы труднее обрабатываются. При обработке титана применяется мокрое шлифование, так как его пыль взрывоопасна.  [c.150]

Титановуюгубкуплавят методом вакуумно-дугового переплава (см. с. 47). Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. После этого чистота титана составляет 99,6—99,7 %. После вторичного переплава слитки используют для обработки давлением.  [c.52]

При температурах выше 500 С титан и его сплавы легко окисляются и поглощают водород, который выз11шает охрупчиванпе (водородная хрупкость). Технический титан хорошо обрабатывается под давлением, сваривается (в среде аргона), но обработка резанпем затруднена. Поставляют титан в виде листов, труб, прутков, поковок, штамповок и других полуфабрикатов.  [c.314]

Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

Порошки ЖС-6КП получали из отходов электроконтактной обработки прутков сплава, легированного кобальтом, хромом, титаном, алюминием, мо 1ибденом.  [c.111]

До середины XX в. считали, что титан не поддается обработке давлением легкость деформирования нодидного титана вызвала удивление и была названа своеобразным оригинальным свойством . Однако тогда титан содержал до 3 % примесей в настоящее время и технический титан достаточно пластичен, так как содержание примесей в нем значительно уменьшено. Так, при наличии примесей, % Ре 0,06, 51 0,04, С 0,05, О 0,14, N 0,03, Н 0,002 титан технической чистоты имеет следующие свойства 0в = 46О МПа оо,2 = 333 МПа, 6 = 28 %, ф = 56 %, КСи = = 1,4 МДжМ НВ 154. ..  [c.84]

При испытании покрытий системы никель—титан при углах атаки, равных 30, 60 и 90°, влияние предварительной обработки поверхности обнаруживается только в период приработки. В дальнейшем скорости изнашивания шлифованных и нега.пифованных покрытий суш ествепно не различаются, несмотря на наличие сетки тре-пцин, образующихся при шлифовании (рис. 6.19). По-видимому энергии удара отдельных частиц абразива не хватает для того, чтобы отделить крупные блоки покрытий, на которые их делит сетка трещин.  [c.119]

Во избежание явлений коррозионного растрескивания в водньрх растворах галогенидов следует, во-первых, правильно выбирать марку сплава и его конечную термическую обработку (см. выше). Во-вторых, для повышения стойкости титановых сплавов к коррозии и коррозионному растрескиванию в хлорсодержащих растворах следует применять специализированные легирующие добавки — палладий и др. [39 40, с. 127 — 130]. Добавка палладия в титановые сплавы практически не изменяет их механические свойства, но сильно смещает электродный потенциал в область пассивации. Это происходит вследствие того, что из-за низкой растворимости палладий в титане находится в виде соединений Т( —Рс1. При растворении соединений выделяющийся металлический палладий осаждается на ювенильной поверхности и пассивирует ее. Исследования  [c.41]

В общем случае под анизотропией акустических свойств металла понимают изменение скорости распространения и коэффициента затухания в зависимости от кристаллографического направления. Она обусловлена анизотропией механических свойств (модуля упругости, пределов прочности и пластичности и др.). Рассмотрим причины анизотропии акустических свойств. Одна из них — это структура материала. Она наиболее ярко проявляется в металлах с крупнозернистой структурой, имеющих транскри-сталлитное строение, т. е. когда кристаллиты имеют упорядоченное строение и их продольные размеры больше поперечных. Примером могут служить титан, аустенитные швы, медь. Вторая причина —термомеханическое воздействие в процессе изготовления проката, которое делает его структуру слоистой, так как волокна металла и неметаллические включения в процессе деформирования оказываются вытянутыми вдоль плоскости листа. Третья —локальная термическая обработка материала, которая обусловливает возникновение напряжений и, как следствие, изменение механических свойств материала.  [c.317]


Стабилизатор самолета Р-14 представляет собой первую серийную деталь из боропластика, использованную в основной конструкции самолета. Выбор материала обшивок определялся массой и стоимостью. Алюминий был исключен из рассмотрения ввиду того, что рабочая температура не превышала 150° С. В конечном итоге был выбран эпоксидный боропластик, а не титан, исходя из обеспечиваемой экономии массы 20% ( 82,5 кг на самолет) и запланированной конкурирующей стоимости материала. Хотя стоимость промышленного титана составляет И—22 дол-лар/кг, значительные потери при механической обработке, достигающие 90%, приводят к увеличению стоимости до уровня —220 доллар/кг. Отходы в производстве деталей из композиционных материалов составляют 7—10%. Конструкция стабилизатора показана на рис. 18. Обшивки выполнены из эпоксидного боропластика, передний и задний лонжероны — из эпоксидного стеклотекстолита. В качестве заполнителя использованы алюминиевые соты. Чтобы избежать снижения прошюсти общивок вследствие концентрации напряжений у болтовых отверстий, весь крепеж на них производился через периферийные титановые элементы.  [c.157]

Большинство создающихся материалов получают широкое освещение в технической печати и на профессиональных конференциях, но, по крайней мере, лишь через десять лет после разработки они становятся общедоступными. Не удивительно, что созданные материалы находят применение в тех случаях, о которых разработчики не могли даже предположить в течение первых лет после появления таких материалов. Примером монсет служить титан, который начал применяться благодаря своим высокотемпературным свойствам, а в настоящее время находит применение в сверхзвуковых самолетах благодаря хорошей свариваемости, хорошим усталостным характеристикам и меньшим размерам деталей, изготовляемых из него, по сравнению с алюминием. Важными характеристиками некоторых композиционных материалов является возможность их свободного конструирования, их высокие усталостные характеристики, позволяющие создать более простые и прочные композиции, сния ающие затраты, идущие на сборку изделия, сокращающие энергетические затраты при механической обработке и т. д. Эти вопросы обсуждались в главах 2, 3 и 13.  [c.492]

Исследованиями установлено, что более перспективным материалов для изготовления износостойких деталей углеразмольных мельниц являются высокоуглеродистые экономнолегированные стали перлитно-карбидного класса, которые по износостойкости превосходят аустенитные стали. Присущая же высокоуглеродистым сталям хрупкость устраняется путем микроле-гировния их титаном и бором и последующей специальной тер мической обработкой  [c.240]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

В качестве материала в работе [409] использовали коммерчески чистый Т1 ВТ1-0 (0,12%0, 0,18%Fe, 0,07%С, 0,04%N, 0,01 %Н, остальное Ti) в виде горячекатанных стержней диаметром 40 мм со средним размером зерен в исходном состоянии 15мкм. Уль-трамелкозернистые наноструктурные состояния в титане были получены сочетанием теплого равноканального углового РКУ-прес-сования и последующей термомеханической обработки (ТМО). Полученные в результате такой комплексной деформационно-термической обработки образцы имели цилиндрическую форму и размеры до 32 мм в диаметре и более 100 мм в длину. Структурные исследования были выполнены на образцах, вырезанных в продольном и поперечном сечениях, используя просвечивающую электронную микроскопию и рентгеноструктурный анализ.  [c.239]

Цирконий вводят в белый чугун при получении ковкого чугуна (ЛЯ того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым 10Дификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий.  [c.63]

При нагреве в атмосфере титан и его сплавы покрываются окалиной, а при высоких температурах наводо-раживаются. Поэтому рекомендуют термической обработке подвергать детали с припуском не менее 0,3 мм на сторону. Большая часть  [c.98]

Значительное содержание молибдена в стали при определенных условиях термической обработки способствует образованию, помимо феррита и о-фазы, ряда интерметаллидов, снижающих коррозионную стойкость материала. Легирование хромоникель-молибденовых коррозионно-стойких сталей титаном или ниобием несколько повышает их стойкость против МКК в неокислительных средах, но малоэффективно в сильноокислительных. Следовательно, можно считать, что в большинстве случаев присутствие молибдена отрицательно влияет на стойкость основных типов хромоникелевых коррозионно-стойких сталей и сплавов в сильно-окислительных средах. Исключением являются медьсодержащие стали и сплавы с высоким содержанием никеля.  [c.56]

Экспериментальные исследования в этом направлении проводились на образцах из различных материалов — стали 45, 9ХС, Р6М5, У8А, титанового сплава ВТ6 и др. Предварительное нанесение слоя легирующего материала осуществлялось с помощью установки электроискрового легирования типа ЭФИ-ЮМ. В качестве легирующих компонентов использовались сплавы Т15К6, ВК8, алюминий, серебро, титан, вольфрам, нихром, карбид вольфрама. Толщина слоя предварительно нанесенного таким образом легирующего материала в зависимости от режимов обработки составляла от 30 до 50 мкм, причем для образцов с большей толщиной слоя была характерна очень высокая шероховатость обработанной поверхности.  [c.32]

Система нагружения. На рис. 1 изображена схема нового криостата. Все силовые детали изготовлены из сплава Ti—6А1—4V. Титан и его сплавы по сравнению с другими традиционными конструкционными материалами при низких температурах имеют значительно больший предел текучести и меньшую теплопроводность. Верхнее и нижнее основания соединены тремя полыми титановыми штангами диаметром 13, длиной 457, толщиной стенки 0,25 мм. Верхнее основание крепится болтами к криостату. В средней части штанги дополнительно фиксируются пластиной. Основания и промежуточная пластина, создавая достаточную жесткость конструкции, обеспечивают течение гелия вдоль стенок сосуда Дьюра. Дополнительными элементами жесткости служат цилиндры (толщина стенки 1.6 мм), концентрично расположенные между нижним основанием и промежуточной пластиной, изготовленные из нержавеющей стали. Цилиндры находятся в жидком гелии и не являются дополнительным теплопроводом. В цилиндрах размещаются электрические провода и трубки для подачи гелия. Диаметр титановой тяги составляет 3.2 (нижняя часть) и 6.3 мм (верхняя часть). Такая тяга выдерживает нагрузку до 4,5 кН (при комнатной температуре). При низких температурах несущая способность удваивается (Э,0 кН при 4 К). Соосность образца относительно оси растяжения обеспечивается жесткими допусками на обработку ( 0,013 мм) и посадочным местом между нижним основанием и гайкой на конце тяги, имеющем сферическую поверхность.  [c.385]



Смотреть страницы где упоминается термин Титан—Обработка : [c.280]    [c.282]    [c.326]    [c.310]    [c.179]    [c.76]    [c.47]    [c.127]    [c.49]    [c.114]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.318 , c.345 ]



ПОИСК



Механико-термическая обработка сплавов титана с метастабильной бета-фазой

ОБРАБОТКА ТЕРМИЧЕСКА титана нелегированного

Обработка давлением титана и его сплавов

Обработка поверхности изделий из титана и его сплавов

Особенности обработки давлением цветных металлов, титана н их сплавов

Регулирование структуры и механических свойств сварных соединений сталей и сплавов титана при сварке и последующей термической и термомеханичеекой обработке

Сплавы жаропрочные литые титана состав, термическая обработка, свойства

Термическая обработка стали титана

Технология обработки титана и его сплавов

Титан

Титан Литье, обработка давлением

Титана термическая обработка

Титанит

Титания

Токарная обработка титана и сплавов — Режимы

Химико-термическая обработка меди титана



© 2025 Mash-xxl.info Реклама на сайте