Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технология обработки титана и его сплавов

Плазменно-дуговую резку целесообразно применять при обработке металлов, которые трудно или невозможно резать другими способами, или когда плазменно-дуговая резка оказывается наиболее экономичной, или обеспечивает скорости резки, согласующиеся с принятыми в технологии обработки того или иного изделия. Плазменно-дуговой резкой обрабатывают алюминий и его сплавы медь и ее сплавы нержавеющие высоколегированные стали низкоуглеродистую сталь чугун магний и его сплавы титан. Наиболее экономична резка алюминия и его сплавов, меди и высоколегированных (нержавеющих) сталей.  [c.215]


В этом разделе рассмотрены принципы выбора технологии и режимов сварки а- и а+р-сплавов титана. Сплавы титана, как и стали, претерпевают в процессе обработки по термическому циклу сварки полиморфные превращения, однако если в железе а-превращение сопровождается увеличением удельного объема на 37о, то в титане Р а-превращение имеет практически неощутимый объемный эффект противоположного знака (удельный объем уменьшается на 0,13%) [2].  [c.45]

Большой интерес для современного машиностроения представляют опоры трения, выполненные из титана. Однако в литературе пока встречается ограниченное число случаев их успешного практического использования. Это объясняется склонностью титановых сплавов к схватыванию и задиру при трении, к пластическому деформированию и наклепу поверхностного слоя, повышенному износу и переносу титана на поверхность трения контртела. Смазывание жидкими смазочными материалами не улучшает антифрикционные свойства пары трения, а твердые смазки плохо удерживаются на поверхности трения из-за низкой адгезии к титану. Для повышения антифрикционных свойств титана применяют упрочнение его поверхности путем насыщения кислородом (оксидирование), азотом (азотирование), нанесения электролитических покрытий (хромирование, никелирование и др.), электролитического сульфидирования и обработки давлением обкатыванием и виброобкатыванием. Наиболее технологичным и эффективным является способ термического оксидирования, состоящий в нагреве в электрических печах с доступом воздуха при температуре 700—800 °С. Результаты упрочнения титана различными способами химико-термической обработки даны в работе [34], а подробная технология термического оксидирования в [83]. Авторы последней работы рекомендуют материалы подшипников с валом из оксидированного титана и допускаемые параметры трения, полученные на машинах трения МИ-1М, СМЦ-2 и Б-4. Наиболее употребительные из этих материалов приведены в табл. 41, откуда видно, что  [c.156]

Технология диффузионного соединения керамики с металлом. Диффузионную сварку керамики с металлом применяют в основном для торцовых спаев. Процесс диффузионной сварки керамики с металлами осуществляется следующим образом. Свариваемые детали в местах сварки подвергают механической обработке. Металлическую деталь обрабатывают с получением параметра шероховатости Яа = — 1,6 мкм. После этого детали отжигают для снятия напряжений и дегазации (ниобий, титан, тантал отжигают в вакууме 1,3 10 Па медь, ковар, железоникелевый сплав 42Н — в сухом водороде). Для очистки поверхности металлокерамические детали подвергают травлению, а во время сборки обезжиривают ацетоном или спиртом. Поверхности керамических деталей в местах сварки обязательно шлифуют.  [c.227]


I являются дорогими материалами, так как в их состав входят относительно редкие элементы — вольфрам, титан, тантал и кобальт." В нашей стране найдены дешевые и в то же время высокопроизводительные материалы, которые во многих случаях успешно заме-I няют твердые сплавы. К ним относятся минералокерамические ( материалы (термокорунд, микролит), выпускаемые в виде пластинок. Такие керамические пластинки изготовляют прессованием и специальной термической обработкой из глинозема AljOg, которого в природе большое количество и он очень дешев. Недорога и технология обработки глинозема, а потому керамические пластинки значительно дешевле пластинок из твердого сплава.  [c.15]

Вакуумная плавка, технология которой разработана совсем недавно, применяется для улучшения физических свойств сплавов. Механические свойства соответственно повышаются, если предотвра1цается окисление и удаляются газы из металла. В качестве ле1 ирующих элементов можно использовать более эффективно легко окисляющиеся элементы бор, алюминий. титан, цирконий и т. д. Таким образом vioiyT быть значительно улучшены температурные характеристики и физические свойства сплавов, содержащих кобальт. Технология ковки и прокатки требует точного регулирования температуры горячей обработки, а также степени обжатия. При прессовании или штамповке после каждой операции рекомендуется проводить отжиг.  [c.306]

Регулирование параметров качества поверхности металлов и, в частности, формы неровностей и упрочнения в широких пределах при резании невозможно. В этом отношении возможности чистовой обработки резанием практически исчерпаны. Это особенно проявляется при необходимости технологического обеспечения непрерывно повышающихся требований к качеству рабочих поверхностей деталей и сравнительно новых конструкционных материалов, какими являются титан и его сплавы. Дальнейшее успешное развитие технологии машино- и приборостроения обусловливает изыскание и широкое исследование прогрессивных процессов чистовой обработки деталей и, в частности, процессов, основанных не на резакии, а на холодном пластическом деформировании поверхности металлов (чистовая обработка давлением).  [c.4]


Смотреть страницы где упоминается термин Технология обработки титана и его сплавов : [c.337]    [c.21]    [c.329]    [c.11]    [c.511]   
Смотреть главы в:

Новые материалы в технике  -> Технология обработки титана и его сплавов



ПОИСК



222 — Технология обработки

Обработка сплавов

Титан

Титан и его сплавы

Титан и сплавы титана

Титанит

Титания

Титан—Обработка



© 2025 Mash-xxl.info Реклама на сайте