Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы алюминиевые — Свойства медные — Свойства

В предлагаемом справочном пособии содержатся данные о механических свойствах (прочность, пластичность, ударная вязкость), широко применяемых в машиностроении различных конструкционных сталей и сплавов (алюминиевых, магниевых, титановых, медных и др.) до температуры 77—20° К. Одновременно приводятся данные, полученные на образцах с концентраторами напряжений (надрезы, отверстия), которые позволяют оценить конструкционную прочность материалов при низких температурах, когда их пластичность значительно снижается. В этих условиях влияние концентрации напряжений сказывается существенно, вызывая у ряда материалов хрупкое разрушение.  [c.3]


При выплавке большинства цветных сплавов (алюминиевых, магниевых, титановых, медных и др.) на поверхности ванны жидкого металла образуются окисные пленки вследствие соприкосновения расплавленного металла с кислородом воздуха. При разливке металла и в процессе движения его в самой форме окисные пленки задерживаются в расплаве и остаются в металле после затвердевания, нарушая сплошность отливки и значительно ухудшая ее свойства.  [c.170]

При литье по выплавляемым моделям модели используются один раз, поскольку для каждой отливки необходима своя модель, которая после изготовления формы выплавляется. По выплавляемым моделям производят отливки весьма сложной конфигурации из различных сталей, жаропрочных сплавов и сплавов с особыми свойствами на основе никеля, кобальта, молибдена, титана, а также медных и алюминиевых сплавов.  [c.186]

Физико-механические свойства 4—138 Сплавы алюминиево-кремниево-медно-магние-  [c.270]

Технологические свойства 4 — 128 Сплавы алюминиево-цинково-медные A I 4 — 126, 156  [c.271]

Классификация алюминиевых, магниевых и медных деформируемых сплавов с указанием области их применения дана в табл. 72. В основу классификации положены в качестве типичных свойств относительные степени прочности и пластичности сплавов (более подробно см. т. 4, гл. II).  [c.459]

Литий применяют для дегазации и раскисления стали, чугуна, бронз и латуни в баббитах используют вместо олова в алюминиевых, магниевых и медных сплавах — для улучшения антифрикционных и литейных свойств.  [c.143]

Отливки по выплавляемым моделям изготовляют практически из всех цветных литейных сплавов алюминиевых, магниевых, медных, цинковых на основе иикеля, тугоплавких металлов и сплавов. При выборе сплава учитывают требования к материалу отливок, группируют эти требования по их значимости, исходя из назначения и условий работы деталей. Предпочтительнее использовать сплавы с меньшими объемной массой и содержанием дорогих и дефицитных компонентов. Для окончательного решения о правильности выбора сплава из него изготовляют опытные отливки и образцы и проверяют соответствие свойств требованиям, предъявляемым к детали.  [c.353]

Основные понятия. Правило фаз. Сплавом называется материал, полученный сплавлением двух или более веществ. Металлический сплав получают сплавлением металлов или преимущественно металлов с неметаллами. При этом металлический сплав обладает комплексом характерных металлических свойств. Вещества, которые образуют сплав, называются компонентами. Компонент, количественно преобладающий в сплаве, называется основным. Сплавы часто называют по основному компоненту медные, алюминиевые, магниевые и т. д. По числу компонентов различают двухкомпонентные (двойные), трехкомпонентные (тройные), четырехкомпонентные и многокомпонентные сплавы. Далее будет рассматриваться строение и свойства двухкомпонентных сплавов, что является основой для изучения сплавов, состоящих из большего числа компонентов. Кроме того, основу большинства многокомпонентных сплавов чаще всего составляет двухкомпонентный сплав.  [c.46]


Для литья под давлением наиболее широко используют- алюминиевые сплавы, имеющие хорошее сочетание физических, механических и технологических свойств. Второе место по объему выпуска отливок занимают цинковые сплавы, затем магниевые и медные. Литье сплава каждого типа осуществляется по определенной технологии процесса и, как правило, на оборудовании, соответствующем особенности сплава. В табл. 2.1 дана сравнительная оценка сплавов по 5-балльной шкале, основанная на их физических, механических и литейных свойствах. Лучшие свойства соответствуют 5 баллам.  [c.23]

Коррозия, определенная по изменению предела прочности (рис. 193), как правило, выше коррозии, определяемой по потери веса. Последнее показывает, что и для медных сплавов характерна неравномерная коррозия, правда, этот э( )фект здесь значительно меньше проявляется, чем у алюминиевых сплавов, но и с ним следует считаться. Для сплавов, богатых цинком (латуни), изменение механических свойств в значительной степени связано с избирательным растворением. Высокопрочные сплавы (К) и латунь 70-30 (М) теряют в значительной степени свои механические свойства в промышленных и промышленно-морских атмосферах вследствие обесцинкования. Избирательное растворение латуней оказывает малое влияние на изменение веса, однако сильно сказывается на механических свойствах.  [c.297]

Старение используют в процессе производства для улучшения или стабилизации свойств материалов, например повышение механической прочности алюминиевых, медных и никелевых сплавов, повышение жаропрочности никелевых сплавов, увеличение коэрцитивной силы медных сплавов и т. д. Оптимальный комплекс свойств для некоторых сплавов достигается после сложного старения при разной температуре в определенной последовательности в связи с различиями процесса распада пересыщенного твердого раствора в разных температурных интервалах.  [c.35]

Поправочный коэффициент учитывающий влияние физико-механических свойств медных и алюминиевых сплавов на скорость резания  [c.360]

Отливки изготовляют практически из всех литейных сплавов алюминиевых, магниевых, медных, цинковых на основе никеля, чугунов, высоколегированных и жаропрочных сталей, тугоплавких металлов и сплавов, плохо обрабатывающихся резанием или обладающих низкими литейными свойствами.  [c.454]

Обрубка необходима для удаления литников. Эта операция в зависимости от свойств сплавов производится разными способами. Литники от чугунных отливок отбивают ударом молотка или кувалды, а также в специализированных барабанах от стальных отливок литники отделяют газовой резкой или беззубыми дисками, а у отливок из сплавов цветных металлов литники отрезают на ленточных и дисковых пилах. Для удаления литников у мелких стальных отливок и отливок из медных сплавов применяют пресс-кусачки, а для алюминиевых и магниевых сплавов — обрубные штампы.  [c.201]

Наряду с медной и алюминиевой проволокой на кабельных заводах производят проволоку из медных и алюминиевых сплавов. В основном используют такие медные сплавы как манганин (Си — 85%, N1 — 3%, Мп—12%) и константан (Си —59%, N1 — 40%, Мп—1%), проволока из которых применяется для магазинов и эталонов сопротивления, в реостатах, термостатах и сушилках. В состав алюминиевых сплавов входит алюминий с добавками кремния, магния, железа. Проволока из алюминиевых сплавов при незначительном снижении электропроводности имеет более высокие механические свойства по сравнению с проволокой из алюминия, что создает хорошие предпосылки для ее более широкого применения в кабельной промышленности.  [c.75]

При нагреве закаленных сплавов до сравнительно низких температур, разных для различных сплавов (искусственное старение), протекает вторая стадия, состоящая в укрупнении частиц выделившихся фаз. Этот процесс можно наблюдать при помощи оптического микроскопа. Появление в микроструктуре укрупненных выделений фаз-упрочнителей совпадает с новым изменением свойств — снижением прочности и твердости сплава и повышением его пластичности и вязкости. Старение наблюдается только у сплавов, которые имеют диаграмму состояния с ограниченной растворимостью, уменьшающейся с понижением температуры. Так как большое количество сплавов имеет диаграмму этого типа, то явление старения весьма распространено. На явлении старения основана термическая обработка многих цветных сплавов—алюминиевых, медных и др.  [c.231]


Определение изменения механических свойств. Изменение механических свойств металлических материалов при статическом растяжении после коррозионных испытаний позволяет устанавливать уменьшение предела прочности (г кг мм ) и относительного удлинения (й в %). Предел прочности после коррозии позволяет также характеризовать неравномерность коррозии, так как разрушение происходит в наиболее слабом сечении образца за счет концентрации напряжений. Изменение механических свойств при коррозионных испытаниях носит условный характер чем больше начальное сечение образца, тем меньше -изменение начального предела прочности. Этот вид испытаний применим для определения влияния коррозии на изменение механических свойств листового материала и тонких труб (напри.мер, из алюминиевых и медных сплавов).  [c.72]

Если некоторое время тому назад конструкции изготавливались в основном из относительно просто сваривающихся материалов, то в настоящее время, наряду с традиционными, для сварных конструкций применяются материалы с весьма различными физическими и сварочными характеристиками коррозионностойкие и жаропрочные стали и сплавы, никелевые и медные сплавы с особыми свойствами, легкие сплавы на алюминиевой и магниевой основах, титановые сплавы, ниобий, тантал и другие металлы и сплавы.  [c.355]

Алюминиево-медно-цинковый сплав ЦАМ 10-5 является хорошим материалом для накладок. Состав сплава и его свойства определяются ГОСТ 7117—62. Сплав при работе с чугунными направляющими эффективно предохраняет их от появления задиров. В паре с чугунными направляющими накладки из ЦАМ 10-5 при малых скоростях и при удельном давлении до 2 кгс/см перемещаются в сравнении с парой чугун — чугун более плавно, с меньшей склонностью к скачкам. В условиях абразивного износа этот сплав работает плохо. Поэтому при использовании накладок из этого материала необходимо уделять особое внимание защитным устройствам, предохраняющим направляющие от попадания грязи, мелкой стружки, абразивной пыли и т. д. Накладки из ЦАМ 10-5 целесообразно использовать при ремонте направляющих расточных, продольно-строгальных, карусельных, фрезерных, зуборезных и других станков. Сплав ЦАМ 10-5 выпускается промышленностью в виде катаного листа толщиной 6—20 мм, шириной 500—700 мм и длиной 600—1000 мм. Твердость материала НВ 95—110.  [c.213]

Проволока биметаллическая — Применение 476 --бронзовая — Механические качества 355 --из сплавов алюминиевых деформируемых — Механические свойства 435 --из сплавов медных — Механические свойства 35 Прокаливаемость стали 232 Прокатка титана 461 Промывки антикоррозионные 327  [c.549]

Сочетание в сварных конструкциях сплавов с различными свойствами позволяет значительно снизить массу и стоимость изделий, применять менее легированные сплавы, упрощать технологический процесс изготовления конструкций. В настоящее время изготавливаются сварные конструкции из разнородных сплавов титана ВТ14 и 0Т4 без присадочного и с присадочным металлом марок 0Т4 и ВТ1. Более пластичный шов получается при использовании сварочной проволоки из сплава ВТ1 без термообработки и с последующей закалкой и старением после сварки. Применяется также сварка титана с алюминиевыми и медными сплавами, а также со сталями. Такое сочетание металлов позволяет при минимальной массе обеспечить работу сварных конструкций при высоких температурах и в агрессивных средах. Сварку титана с алюминиевыми и медными сплавами, со сталью рекомендуется проводить с использованием промежуточных металлов. В качестве промежуточных сплавов при сварке  [c.151]

При конструировании химических машин необходимо выбирать материалы с таким расчетом, чтобы были предотвращены условия возникновения элект[)о-химической коррозии, поэтому в деталях и узлах, где сопрягаются два металла, необходимо избегать контакта металлов, электрохимические потенциалы которых значительно отличаются друг от друга. Недопустимо создавать контакт со сталью меди и медных сплавов, никеля и никелевых сплавов, благородных металлов и их сплавов. Для предотвращения коррозионного разрушения в таких случаях целесообразно применение оцинкования и кадлшрования стальных деталей, применение прокладок и шайб из оцинкованного железа. Для нержавеющих сталей недопустимым является контакт с алюминием и его сплава.ми, медью и медными сплавами и т. д. Для алюминиевых сплавов недопустим контакт со сталями, медными и никелевым сплавами и допустим контакт с. 1юбыми материалами, покрытыми цинком, кадмием и алюминием. Необходилю также учитывать коррозию свинца при контакте его с портланд-цементом, так как он обладает щелочными свойства.ми.  [c.81]

Предварительные замечания. В предыдущих параграфах главы обсуж-дспы многие общие особенности структуры и свойств металлов и сплавов. У отдельных металлов или сплавов имеется ряд специфических свойств, знать которые необходимо инженеру, занимающемуся проблемой надежности, при проектировании тех или иных конструкций, В настоящем параграфе остановимся па некоторых особенностях наиболее важных для техники металлов и сплавов. К их числу относятся железоуглеродистые сплавы (стали, чугуны), алюминиевые, магниевые, сверхлегкие, медные, никелевые сплавы, титан и его сплавы, цирконий и его сплавы, бериллий, тугоплавкие металлы и их жаропрочные сплавы. Некоторые механические и упругие характеристики семи чистых металлов приведены в табл. 4.11.  [c.318]

Литий — серебристо-белый очень мягкий металл, легко окисляющийся на воздухе. По ГОСТ 8774—75 устанавливаются три марки лития ЛЭ-1 (содержание чистого лития не менее 99,5%), Л9-2(98,8%) и ЛЭ-3 (98,0%). Применяется в машиностроении для дегазации и раскисления стали, чугуна, бронз и латуни, в баббитах — вместо олова для повышения температуры плавления и апти-фрикгцгонных свойств. Повышает качество алюминиевых, магниевых, медных, свинцовых и других сплавов, улучшает их антикоррозионные и литейные свойства и т. д., образует твердые припои для пайки без флюсов. Поставляетс.ч в виде чушек массой до 2,5 кг и хранится в плотно закрытых (запаянных) банках из белой жести (по 12—20 чушек — до 50 кг), залитых смесью трансформаторного масла (50%) и парафина (50%) с надписью Осторожно, от воды загорается .  [c.170]


Физико-мехаяически свойства 4—151 Сплавы алюминиево-медно-магниевые 4—148 Сплавы алюминиево-медно-магниевые 122  [c.271]

Из всех изученных цинковых подшипниковых сплавов наилучшими механическими и антифрикционными свойствами обладают сплавы цинка, содержащие медь и алюминий. Сплавы цинка с содержанием меди—сурьмы, сурьмы—алюмиия, магния—алюминия, железа— марганца, несмотря на сравнительно высокие антифрикционные свойства, имеют пониженные механические свойства по сравнению с таковыми свойствами медно-алюминиево-цинковых сплавов. Особенно следует отметить низкую ударную вязкость этих сплавов (хрупкость), вследствие чего для практического использования в промышленности они не подходят.  [c.338]

В табл. 25—35 приведены выборочные сведения для труб, не превышающих по наружному диаметру 50 мм. Допустимые рабочие и разрушающие давления для труб определяются по табл. 36 и ПО и номограмме, приведенной на рис. 69, на основании механических свойств, указанных в таблицах. Для давлений 150 кГ1см и выше применяются стальные бесшовные трубы. По данным работы [5], применение стальных электросвар-ных труб в практике ограничивают обычно рабочим давлением до 70 кГ/см" , стальных водогазопроводных труб — до 10/сГ/сж , труб из алюминиевых сплавов — до ЪОкГ/см , медных труб — до 30 кГ1см . В гидросистемах, работающих на минеральных маслах, не рекомендуется применение медных труб, способствующих окислению масла.  [c.53]

Алюминиевые брснзы выделяются высокими механическими свойствами среди медных сплавов, в связи с чем их широко применяют в машиь острое-нии. В промышленности используют как двойные сплавы меди с алюминием (простые бронзы), так и более сложные по составу бронзы с добавками марганца, железа, никеля и других элементов. На поверхности алюминиевой и кремнистой бронз образуется окис-ная пленка, которая трудно удаляется с использованием обычных флюсов. Изделие перед пайкой необходимо обрабатывать во фтористс-водородпой или плавиковой кислоте. При пайке оловянно-свинцовыми припоями применяют активные флюсы с повышенным содержанием соляной кислоты. Рекомендуются предварительная очистка и флюсование поверхности алюминиевой бронзы смесью борной кислоты с хлористыми солями металлов. Марганцевые бронзы следует паять с использованием ортофосфорной кислоты.  [c.253]

Температура нагрева для горячей деформации зависит в первую очередь от природы деформируемого материала — сталь, медные сплавы, алюминиевые сплавы и другие его химического состава — углеродистая, низколегированная, аустенитная сталь, а также от толщины заготовки. Однако в любых случаях температура нагрева должна быть значительно ниже температуры солидуса сплава. Если металл перегрет, то могут наступить пережог , выражающийся в интенсивном окислении границ зерен, и, как следствие, охрупчивание металла. Пережог — дефект нагрева, который не может быть исправлен. Длительное пребывание металла при температуре несколько меньшей, чем температура пережога, может привести к значительному росту зерна и снижению пластических свойств заготовки — явление перегрева. В значителыюм большинстве случаев перегрев может быть исправлен дополнительной термической обработкой.  [c.399]

Газовая сварка меди используется в ремонтных работах. Рекомендуют использовать ацетиленокислородную сварку, обеспечивающую наибольшую температуру ядра пламени. Для сварки меди и бронз используют нормальное пламя, а для сварки латуней - окислительное (с целью уменьшения выгорания цинка). Сварочные флюсы для газовой сварки меди содержат соединения бора (борная кислота, бура, борный ангидрид), которые с закисью меди образуют легкоплавкую эвтектику и выводят ее в шлак. Флюсы наносят на обезжиренные сварочные кромки по 10. .. 12 мм на сторону и на присадочный металл. При сварке алюминиевых бронз надо вводить фториды и хлориды, растворяющие AI2O3. При сварке меди используют присадочную проволоку из меди марок М1 и М2, а при сварке медных сплавов - сварочную проволоку такого же химического состава. При сварке латуней рекомендуют использовать проволоку из кремнистой латуни ЛК80-3. После сварки осуществляют проковку при подогреве до 300. .. 400 °С с последующим отжигом для получения мелкозернистой структуры и высоких пластических свойств.  [c.461]

Свинцовые латуни, кремниевые бронзы, оловянные бронзы и медно-никелёвые сплавы склонны к- горячеломкости поэтому детали из них при пайке не назревают на весу, не подвергают воздействию резких усилий или нагрузок, нагрев при пайке проводят достаточно медленно. Йод действием нагрева при пайке возможно снижение механических свойств паяных соединений из бериллиевой бронзы, упрочняемой в процессе старения. Алюминиевые бронзы во избежание окисления и возможности образования хрупких интерметалл ид ов в шве следует паять, применяя быстрйе способы нагрева.  [c.273]

Для устранения этих дефектов фирма пыталась применять керами-ческие теплозащитные покрытия на днище поршней. Однако это не обеспечило повышения надежности, так как само покрытие отслаивалось. В последующем фирма стала применять наплавку кромок выем ки. жаропрочным сплавом Нимоник 90 , содержащим около 60% никеля, 18—20% хрома, 15—20% кобальта и 2—3% титана. Это также не устранило образования трещин на кромках. Надежная работа поршня была обеспечена после перехода на установку в головку вставки 3 (рис. 33) из медно-кобальто-бериллиевого сплава, коэффициент теплопроводности которого и прочностные свойства значительно выше, чем у алюминиевого сплава. Вставку запрессовывают в головку и стягивают при помощи фланца и болтов, изготовленных из стали с высоким пределом прочности. Между вставкой и зоцой уплотнительных колец профрезерованы полости для масла, которое подается струей под давлением 5—6 кгс/см по отверстию 2 через сопло диаметром 10 мм.  [c.63]

Скорость охлаждения с температуры рекристаллизационного отжига металлов и однофазных сплавов не сказывается на их свойствах. Полуфабрикаты из медных сплавов для лучшего отделения окалины иногда охлаждают в воде. Если же сплав способен упрочняться п ри закалке и старении, то скорость охлаждения с температуры рекристаллизационного отжига иногда приходится регламентировать. Так, в термически упрочняемом алюминиевом сплаве В95 при отжиге после холодной деформации, кроме основного процесса — рекристаллизации, может протекать также побочный процесс — частичная закалка (подкалка) с последующим старением. В результате при отжиге не достигается необходимое смягчение материала. Поэтому сплав В95 следует медленно охлаждать вместе с печью с температуры рекристаллизационного отжига (380—430°С) до температуры li50° (со скоростью не более 30°С ).  [c.110]

Специальными бронзами называют сплавы на медной основе, содержащие в качестве основных примесей А1, N1, Мп, 81, Ве и др. Алюминиевые бронзы содержат 4—11% А1. Они обладают высокими механическими свойствами и высокой коррозионной устойчивостью. Последняя значительно превосходит коррозионную устойчивость оловянистой бронзы и латуни. Алюминиевые бронзы имеют хорошие литейные свойства. Из алюминиевых бронз БрА5 и БрАб изготовляют листы, ленты, прутки и проволоку.  [c.107]


Повышает качество алюминиевых, магниевых, медных, свинцовых других сплавов, улучшает их антикоррозионные и литейные свойства, образует тве,рдые црипои для пайки без флюсов.  [c.54]

Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются, удовлетворительно свариваются контактной роликовой и дуговой сваркой, но обладают низкой коррозионной стойкостью, малым модулем упругости, плохими литейными свойствами, склонностью к газонасыш ению, окислению и воспламенению при их приготовлении. Различают по технологии изготовления деформируемые (МА) и литейные (МЛ) сплавы по механическим свойствам — невысокой и средней прочности, высокопрочные и жаропрочные, по склонности к упрочнению — упрочняемые и неупрочняемые термической обработкой. Для повышения пластичности в сплавах повышенной чистоты (пч) снижают содержание Ге, N1, Си.  [c.678]

МЕДНЫЕ СПЛАВЫ, весьма многочисленные и разнообразные по составу сплавы, главным компонентом к-рых является медь (см. Спр. ТЭ, т. И, стр. 96—130 и 151—152). М. с. нашли себе самое широкое и разнообразное применение. Свойства меди (большая электропроводность, пластичность и др.) конечно сказываются на свойствах и структуре М. с. С нек-рыми металлами (Ni, Au) медь образует гомогенные (однородные) твердые растворы в любых пропорциях, с другими — в б. или м. ограниченных отношениях (Zn, Мп, Sn, Al, Sb, As, d, Si, Ti, Be, Mg), наконец рядом металлов медь почти совсем не дает гомогенных твердых растворов, а образует только смеси (РЬ, Bi). Наибольшее значение в технике имеют М. с., представляющие собой гомогенные твердые растворы однако немалую роль играют и двухфазные медные сплавы (напр, сплавы меди, богатые Zn или Sn), особенно в производстве литых изделий. К числу важнейших М. с. относятся 1) Си — Zn-сплавы— латуни (см.), содержащие до 46% Zn 2) u — Sn-сплавы — оловянистые бронаы (см.) с < 10% Sn (реже до 15%) 3) Си — А1-сплавы — алюминиевые бронзы  [c.343]


Смотреть страницы где упоминается термин Сплавы алюминиевые — Свойства медные — Свойства : [c.217]    [c.93]    [c.271]    [c.271]    [c.50]    [c.64]    [c.621]    [c.189]    [c.121]    [c.166]    [c.54]    [c.549]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.184 ]



ПОИСК



1---медные

Медные сплавы алюминиевые

Сплавы алюминиево-медные свойства

Сплавы алюминиево-медные свойства

Сплавы алюминиевые — Свойства

Сплавы медные



© 2025 Mash-xxl.info Реклама на сайте