Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы алюминиевые — Свойства

Отливки бронзовые — Механические свойства 116, 118 --из сплавов алюминиевых — Механические свойства 120 — Получе-  [c.968]

К металлическим материалам относятся черные металлы (чу-гукы и стали), сплавы цветных металлов (бронзы, латуни, баббиты), легкие сплавы (алюминиевые и магниевые), биметаллы. Черные металлы являются основными машиностроительными материалами. Они сравнительно дешевы, обладают высокой прочностью. Сплавы цветных металлов дороги, но имеют высокие антифрикционные свойства, хорошо обрабатываются резанием. Легкие сплавы (силумин, дюралюминий и др.) имеют малую плотность и обладают хорошими литейными свойствами.  [c.353]


С текстурой связано известное явление пресс-эффекта, заключающееся в том, что при определенных условиях прессования алюминиевых сплавов их прочностные свойства в направлении прессования оказываются значительно более высокими, чем в направлении течения металла при иных схемах деформаций, например при прокатке.  [c.295]

Одновременное повышение прочностных и пластических свойств указанных алюминиевых сплавов в работе [31] объясняется измельчением размеров дендритов а-фазы и эвтектики, а также физическими характеристиками последней. Предел прочности а-твердого раствора меньше, чем эвтектики относительное удлинение выше. Вследствие такого различия в свойствах составляющих сплава фактические его свойства в значительной степени зависят от соотношения указанных составляющих.  [c.121]

Принятая для оценки литейных свойств алюминиевых сплавов, коррозионной стойкости, обрабатываемости резанием и свариваемости пятибалльная шкала дает возможность приблизительно судить о свойстве одного алюминиевого сплава только сравнительно со свойствами других алюминиевых сплавов. Наиболее высокие свойства оцениваются баллом 5.  [c.52]

Некоторые титановые сплавы, испытанные в определенных средах, имеют межкристаллитный характер разрушения. Тем не менее, если отсутствует сильно выраженная направленность зерен по типу высотного направления в алюминиевых сплавах, то анизотропия свойств при КР по типу, рассмотренному выше не встречается.  [c.318]

Общее сравнение коррозионного поведения медноникелевых сплавов, алюминиевой латуни и других материалов на основе меди можно провести по данным табл. 37. Свойства наиболее часто применяемых в теплообменниках сплавов кратко обсуждаются ниже.  [c.107]

При литье по выплавляемым моделям модели используются один раз, поскольку для каждой отливки необходима своя модель, которая после изготовления формы выплавляется. По выплавляемым моделям производят отливки весьма сложной конфигурации из различных сталей, жаропрочных сплавов и сплавов с особыми свойствами на основе никеля, кобальта, молибдена, титана, а также медных и алюминиевых сплавов.  [c.186]

Состав и свойства. Алюминиевые сплавы обладают рядом свойств, которые выделяют их как перспективный материал для подшипников скольжения. В первую очередь это относится к высокой теплопроводности алюминиевых сплавов, благодаря которой смазочная способность масел может сохраняться в более широком диапазоне нагрузок и скоростей.  [c.112]


Литейные оловянные бронзы применяют главным образом для получения пароводяной (герметичной) арматуры, работающей под давлением, и для отливки антифрикционных деталей (втулки, подшипники, вкладыши, червячные пары и др.). Они находят применение также для изготовления различных деталей в общем машиностроении в тех случаях, когда требуется сочетание высоких коррозионных, антифрикционных свойств, электро- и теплопроводности. Эти бронзы отличаются хорошими литейными свойствами высокой жидкотекучестью, малой линейной усадкой объемная усадка значительна, но рассредоточена равномерно по всему объему, что позволяет получать отливки без применения прибылей и иметь высокий выход годного (80—90%) при литье, т. е. пониженную себестоимость отливки по сравнению с другими литейными сплавами (алюминиевые бронзы, латуни, стали и т. д.). Хотя рассредоточенная (рассеянная) усадка усложняет  [c.224]

Физические свойства 275, 277, 278 Отжиг сплавов алюминиевых деформируемых 69—71  [c.296]

Отливки из сплавов алюминиевых — Герметичность 100, 101 —Литье — Способы 76, 102 —Свойства 79, 99 — Трещины горячие 84, 87, 100, 101  [c.296]

Электрические свойства 275, 279 Панели прессованные из сплавов алюминиевых деформируемых — Механические свойства 19, 38, 57  [c.296]

Электрические свойства 275, 279 Плиты из сплавов алюминиевых деформируемых — Выносливость 61  [c.296]

Сортамент 258 --из сплавов алюминиевых деформируемых — Механические свойства 38, 64  [c.297]

Сортамент 258 ---из сплавов алюминиевых деформируемых — Механические свойства 18 — Механические свойства при различных температурах 54 — Механические свойства при растяжении при повышенных температурах 51 — Применения 74 --из сплавов алюминиевых деформируемых заклепочная — Механические свойства 35, 63 — Механические свойства при повышенных температурах 58 — Химический состав 17  [c.298]

Термическая обработка бронз алюминиевых — Режимы 236 --сплавов алюминиевых деформируемых — Режимы 63, 67—71 Термическая обработка сплавов алюминиевых литейных — Виды 76, 78 — Влияние на типичные механические свойства сплавов 97, 98  [c.302]

Трубы из сплавов алюминиевых деформируемых — Механические свойства 34, 35  [c.303]

Марки алюминия и алюминиевых сплавов и механические свойства сы. в табл. 252.  [c.612]

Флюс Ф5, в котором вместо хлорида цинка содержатся хлориды олова и кадмия, отличается хорошими технологическими свойствами и не вызывает эрозии при печной пайке алюминиевых сплавов алюминиевыми и цинковыми припоями.  [c.414]

Механические свойства 4—166 Алюминиевые сплавы — см. Сплавы алюминиевые. а также под названием отдельных алюминиевых сплавов, например, Дуралюмин  [c.12]

Физико-механические свойства 4—138 Сплавы алюминиево-кремниево-медно-магние-  [c.270]

Физико-механические свойства 4—153 Сплавы алюминиево-магниевые АЛ8 4 — 126.  [c.270]

Физико-механические свойства 4—154 — Химический состав 4— 154 Сплавы алюминиево-магниевые АМг 4—173, 175  [c.270]

Технологические свойства 4 — 128 Сплавы алюминиево-цинково-медные A I 4 — 126, 156  [c.271]

Сплавы алюминиевые 32S 4 — 194 Химический состав 4—165 -— для полуфабрикатов 4—165 Физикомеханические свойства 4 — 167 ---32S (Low-Ex) жаростойкие 4—194  [c.271]

Сплавы алюминиевые АК2 деформируемые 4— 192 Марки 4—168 --АК2 для полуфабрикатов 4—165 Физико-механические свойства 4—167  [c.272]

Сплавы алюминиевые АК6 для полуфабрикатов 4—165 Физико-механические свойства 4 — 166 —— АК8 4— 188 Химический состав 4 — 165  [c.272]

Сплавы алюминиевые АМг для полуфабрикатов 4—165 Физико-механические свойства 4 — 166  [c.272]

Химический состав 4—165, 171 Сплавы алюминиевые АМц для полуфабрикатов 4—165 Физико-механические свойства 4—166 Химический состав 4—165  [c.272]

Сплавы алюминиевые — Свойства 184, 197  [c.999]

Сплавы алюминиевые — Температура плавления 71 --для литья под давлением — Температура плавления 71 --для постоянных магнитов — Магнитные свойства 455 --легкоплавкие — Температура плавления 71  [c.730]


Алюминиевые подшипниковые сплавы обладают высокими свойствами (низким коэффициентом трения и высокой износостойкостью). Но по технологичности они уступают обычным баббитам. Их более высокая твердость является скорее недостатком, чем преимуществом сплава, так как требует обработки цапф и вкладыша повышенной чистоты, а шейка вала должна быть твердой. Несоблюдение этих условий вызовет ускоренный износ. Высокий коэффициент линейного расширения алюминиевых баббитов требует более тшательной сборки с большими зазорами.  [c.623]

Сплавы на основе алюминия. Сплав А1—Mg марки АМгб (магналий) является деформируемым и термически неупрочняемым, состав сплава 6,3% Mg 0,6% Мп 0,06% Ti. Магний уменьшает плотность алюминиевого сплава (рмй= 1,74 г/см ), повышает прочность без снижения пластичности и коррозионную стойкость. При 20° С сплав имеет следующие свойства = 330 Мн/м (33 кгс/мм ) б = 24%. Сплав АМгб теплостоек до 250° С, при этой температуре его свойства следулощие = = 160 Мн/м (16 кгс/мм ) б = 45%. Этот сплав применяют при изготовлении труб, крышек и корпусов приборов, кронштейнов, экранов, стрелок и т. д.  [c.270]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]

Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу.  [c.74]

В работе [185] приведены результаты 10-летних коррозионных испытаний пластин из высокочистого алюминия и 7 алюминиевых сплавов при постоянном погружении и на среднем уровне прилива в Райтсвилл-Биче (Сев. Каролина, США). На всех образцах, в том числе и на пластинах, которые снимались с испытаний для получения промежуточных результатов, наблюдалось сильное обрастание раковинами и другими морскими организмами. Обрастание не оказывало заметного влияния на глубину питтинга на образцах, испытывавшихся в зоне прилива (т. е. при переменном погружении), но при 5- и 10-летней экспозиции приводило к сильному травлению некоторых сплавов. Изменения прочностных свойств после 10-летней экспозиции для всех испытанных сплавов были небольшими. Уменьшение временного сопротивления после экспозиции в условиях полного погружения составило для сплава 5086-0 3,7 %, 5154-838 5,1 %, 5457-Н34 5,2 %. Относительное удлинение высокочистого алюминия 1199 и сплавов 5154-Н38, 5456-0 и 5456-Н321 уменьшилось на 16—27 %, а сплава 5086-0 примерно на 6 %.  [c.188]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]


Например Цилиндрические сочленения Спайванне холодное I. 484 Сплавы алюминиевые - Классификация 1. 180-Свойства 1. 180  [c.350]

Физико-мехаяически свойства 4—151 Сплавы алюминиево-медно-магниевые 4—148 Сплавы алюминиево-медно-магниевые 122  [c.271]

Физико-механические свойства 4—166 Сплавы алюминиевые АЛДи. 4—171  [c.272]

Сплавы В 95 — Механические свойства после искусственного старения 338 ---алюминиево-магниевые — Механические свойства 202 — Рекристаллизация — Диаграммы 336 — Соединения стыковые — Сварка аргоно-дуговая — Режимы 203, 206 Сплавы алюминиевые — Ковка и щтам-повка горячая — Температурные интервалы 51  [c.460]


Смотреть страницы где упоминается термин Сплавы алюминиевые — Свойства : [c.513]    [c.164]    [c.297]    [c.299]    [c.270]    [c.270]    [c.271]    [c.271]    [c.272]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.184 , c.197 ]



ПОИСК



18 — Механические свойства при из сплавов алюминиевых деформируемых заклепочная — Механические свойства 35, 63 — Механические свойства при повышенных температурах 58 — Химический соста

232 — Химический состав и применение из сплавов алюминиевых деформируемых — Механические свойства

АНТИФРИКЦИОННЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ Часть пятая СВОЙСТВА ПРОМЫШЛЕННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ Механические свойства алюминиевых сплавов

Алюминиевые сплавы вторичные со специальными свойствами

Алюминиевые сплавы вторичные технологии, свойств

Алюминиевые сплавы, механические свойства

Елияние повторного нагрева на свойства алюминиевых сплавов

Жаропрочные сплавы алюминиевые на никелевой основе, механич. свойства

Защитные свойства алюминиевых покрытий на магниевых сплавах

Кауфман Дж. Г., Богардус К О., Уэндерер Е. Т. Механические свойства при растяжении и чувствительность к надрезу алюминиевых сплавов при температуре

Кауфман Дж. Г., Уэндерер Е. Т. Механические свойства при растяжении и чувствительность к надрезу некоторых алюминиевых сплавов серии 7ХХХ при температуре

Классификация алюминиевых сплавов и их свойства

Коррозионные свойства алюминиевых сплавов

Листы биметаллические — Применение из алюминиевых сплавов Механические свойства 426 Химический состав

Литье алюминиевых сплавов из углеродистой стали — Механические свойства

Механические свойства алюминия сплав алюминиевых деформируемых при повышенных температура

Механические свойства алюминия сплавов алюминиевых антифрикционных высокооловяннстых

Механические свойства алюминия сплавов алюминиевых литейных

Механические свойства высокопрочных алюминиевых и титановых сплавов

Механические свойства деформируемых алюминиевых сплаОбласть применения деформируемых алюминиевых сплавов

Механические свойства и методика испытаний алюминиевых сплавов

Механические свойства и применение жаропрочных алюминиевых сплавов, магниевых сплавов и авиационных сталей

Механические свойства литейных алюминиевых сплавов

Механические свойства литейных алюминиевых сплавов, полученные на отдельно отлитых образцах

Механические свойства сплавов алюминиевых деформируемых

Механические свойства стали н алюминиевых сплавов

Механические свойства цветных металлов Сплавы алюминиевые литейные

Мкрчанц. Исследование механических свойств некоторых алюминиевых сплавов при растяжении и сжатии

Нельсон Ф. Г., Кауфман Дж. Г., Уэндерер Е. Т. Механические свойства при растяжении и чувствительность к надрезу стыковых сварных соединений деформируемых и литейных алюминиевых сплавов при низких температурах

Основные марки алюминиево-бериллневых сплавов и их свойства

Отливки бронзовые Механические из сплавов алюминиевых — Механические свойства 120 — ПолучеОтносительный метод Патрон

Отливки из сплавов алюминиевых Герметичность 100, ЮГ,—Литье Способы 76, 102 —Свойства

Панели прессованные из сплавов алюминиевых деформируемых — Механические свойства

Подшипниковые сплавы алюминиево-железные- Механические свойства

Поковки из сплавов алюминиевых свойства

Профили прессованные из алюминия алюминиевых сплавов 96 Механические свойства

Прутки из бронз из сплавов алюминиевых деформируемых — Выносливость 44, 61 Испытания ступенчатые — Результаты 53 — Механические свойства

Прутки из сплавов алюминиевых свойства

Пугачев А. И. Технология изготовления и свойства клеесварных соединений алюминиевых сплавов. Филиал ВИНИТИ

Сварка алюминия и его сплавов Состав и свойства алюминия и алюминиевых сплавов

Свойства алюминиевых сплавов антифрикционного чугуна

Свойства алюминиевых сплавов высокопрочного чугуна

Свойства алюминиевых сплавов и применение их в машиностроении

Свойства алюминиевых сплавов ковкого чугуна

Свойства алюминиевых сплавов магниевых сплавов

Свойства алюминиевых сплавов металлов

Свойства алюминиевых сплавов модифицированного чугуна

Свойства алюминиевых сплавов огнеупорных материалов

Свойства алюминиевых сплавов серого чугуна

Свойства анодных оксидных пленок и зависимость их от состава анодируемого алюминиевого сплава

Свойства и применение алюминиевых сплавов при низких температурах

Свойства и применение алюминия Алюминиевые сплавы. Полуфабрикаты из алюминиевых сплавов. Сортамент прессованных профилей из алюминия и алюминиевых сплавов

Свойства металла сплавов на алюминиевой основ

Свойства механические магниевых сплавов алюминиевых энергопрочных

Связь усталостной прочности алюминиевых сплавов с другими их свойствами

Состав и свойства алюминиевых сплавов

Сплавы В Механические алюминиево-магниевые — Механические свойства 202 — Рекристаллизация — Диаграммы 336 — Соединения стыковые — Сварка аргоно-дуговая — Режимы

Сплавы алюминиево-медные свойства

Сплавы алюминиевые Влияние на типичные механические свойства

Сплавы алюминиевые дефоомируемые Механические свойства

Сплавы алюминиевые дефоомируемые алюминиевые литейные — Механические свойства

Сплавы алюминиевые дефоомируемые магниевые литейные — Механические свойства

Сплавы алюминиевые деформвруемые свойств

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические характеристики 436 — Химический состав

Сплавы алюминиевые деформируемые для прессованных профилей Механические свойства 430 Химический состав

Сплавы алюминиевые деформируемые упрочняемые — Механические свойства 267 — Полуфабрикаты — Механические свойства гарантируемые

Сплавы алюминиевые и магниевые — Свойства

Сплавы алюминиевые магниевые деформируемые — Механические свойства

Сплавы алюминиевые промышленные для активных слоев биметаллов — Свойства

Сплавы алюминиевые промышленные инвар — Физические свойств

Сплавы алюминиевые промышленные легкоплавкие 452, 453 —Свойства 452 — Химический соста

Сплавы алюминиевые — Коэффициенты свойства механические

Сплавы алюминиевые — Механические свойства 328 — Применение

Сплавы алюминиевые — Механические свойства 328 — Применение для сварных конструкций

Сплавы алюминиевые — Свойства антифрикционные

Сплавы алюминиевые — Свойства железоникелевые

Сплавы алюминиевые — Свойства медноникелевые — Свойства

Сплавы алюминиевые — Свойства медные — Свойства

Сплавы алюминиевые — Свойства цветные — Пределы выносливости (усталости)

Сплавы алюминиевые — Температура для постоянных магнитов — Магнитные свойства

Сплавы алюминиевые — Температура жидкие — Свойства теплофизические — Зависимость от температур

Сплавы алюминиевые — Температура натрия с калием жидкие — Свойства теплофизические — Зависимость

Сплавы алюминиевые, использование коррозионные свойства

Сплавы алюминиевые, использование физические и механические свойства

Сплавы алюминиевые, использование физические свойства

Сплавы алюминия — Онсядирование алюминиевые литейные — Механические свойства 62 — Химический состав

Сплавы железо-никель-алюминиевые для постоянных магнитов состав, свойства, технология изготовления и термическая обработка

Термическая обработка сплавов алюминиевых литейных — Виды 76, 78 Влияние на типичные механические свойства сплавов

Трубы из алюминия и алюминиевых сплавов катаные и тянутые — Механические свойства 383, 384 - Обозначение 383 - Размеры

Трубы из сплавов алюминиевых деформируемых — Механические свойства

Установка для определения механических свойств алюминиевых сплавов в температурном интервале кристаллизации

Физические свойства алюминиевых сплавов

Физические свойства алюминия высокой сплавов алюминиевых деформируемых

Физические свойства алюминия высокой сплавов алюминиевых литейны

Химический состав и из сплавов алюминиевых деформируемых прессованные — Выносливость 61 — Механические свойства

Химический состав и из сплавов алюминиевых деформируемых — Механические свойства

Шелестенко, Ю. М. Нагевич. Исследование физикомеханических свойств алюминиевых сплавов Д1-Т, Д16-Т, АМг

Штамповки из сплавов алюминиевых деформируемых — Механические свойства



© 2025 Mash-xxl.info Реклама на сайте