Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медные сплавы алюминиевые

Термическая обработка Цель термической обработки Сталь Чугун Медные сплавы Алюминиевые сплавы Магниевые сплавы  [c.129]

Сталь Чугун Медные сплавы Алюминиевые сплавы Магниевые сплавы  [c.130]

Известны также подшипниковые алюминиевые сплавы на основе систем А1—Fe, AI—Ni, AI—Си. Алюминий расходуется также на приготовление медных сплавов — алюминиевых бронз и латуней.,  [c.317]


Медные сплавы Алюминиевые сплавы  [c.234]

Для изготовления литых деталей применяют чугуны (серый, модифицированный, высокопрочный, ковкий, легированный), сталь (углеродистую, легированную), медные, магниевые, алюминиевые, цинковые, свинцовые, оловянные и никелевые литейные сплавы, которые хорошо заполняют в расплавленном сосгоянии литейную форму и обладают после затвердевания необходимыми механическими, физическими и химическими свойствами. Марку материала детали указывают в соответствующей графе основной надписи чертежа. Многие литейные сплавы имеют в обозначении марки букву Л, которая характеризует литейные свойства материала и указывает способ изготовления детали.  [c.256]

Типы сварных соединений, выполняемых стыковой сваркой сопротивлением, представлены на рис. 5.28. Этим способом соединяют заготовки малого сечения (до 100 мм ), так как при больших сечениях нагрев будет неравномерным. Сечения соединяемых заготовок должны быть одинаковыми по форме с простым периметром (круг, квадрат, прямоугольник с малым отношением сторон). Сваркой сопротивлением можно сваривать низкоуглеродистые, низколегированные конструкционные стали, алюминиевые и медные сплавы.  [c.213]

Типы сварных соединений, выполняемых точечной сваркой, показаны на рис. 5.33. Точечной сваркой изготовляют штампосварные заготовки нри соединении отдельных штампованных элементов сварными точками, В этом случае упрощается технология изготовления сварных узлов и повышается производительность. Точечную сварку применяют для изготовления изделий из низко-углеродистых, углеродистых, низколегированных и высоколегированных сталей, алюминиевых и медных сплавов, Толи ина свариваемых металлов составляет 0.5—5 мм.  [c.215]

Пайку погружением выполняют в ваннах с расплавленными солями или припоями. Соляная смесь обычно состоит из 55 % КС1 и 45 % НС1. Температура ванны 700—800 °С. На паяемую поверхность, предварительно очищенную от грязи н жира, наносят флюс, между кромками или около места соединения размещают припой, затем детали скрепляют и погружают в ванну. Соляная ванна предохраняет место пайки от окисления. Перед погружением в ванну с расплавленным припоем покрытые флюсом детали нагревают до температуры 550 °С. Поверхности, не подлежащие пайке, предохраняют от контакта с припоем специальной обмазкой из графита с добавками небольшого количества извести. Пайку погружением в расплавленный припой используют для стальных, медных и алюминиевых сплавов, деталей сложных геометрических форм. На этот процесс расходуется большое количество припоя.  [c.241]


Алюминиево-медные сплавы ,. . ......... 1,4-1,5  [c.75]

Сварка цветных металлов (медные и алюминиевые сплавы) затруднительна из-за высокой теплопроводности, легкой окисляемости (образование тугоплавких окисных пленок) и требует применения флюсов.  [c.159]

В соединениях с разнородными металлами (например, алюминиевые заклепки в деталях из магниевых и медных сплавов) необходимо антикоррозионное покрытие заклепок (кадмием или цинком).  [c.199]

Мягкие режимы применяют преимущественно при сварке углеродистых и низколегированных сталей, жесткие—коррозионно-стойких сталей, алюминиевых и медных сплавов.  [c.110]

Растворенный водород также оказывается нежелательным, так как он резко уменьшает пластичность металлов (стали, медные и алюминиевые сплавы), вызывает пористость в сварных швах и в зоне термического влияния. Так называемая водородная хрупкость металлов- в настоящее время стала важной технической и научной проблемой, так как применение упрочненных сталей, обладающих малым запасом пластичности б, вызывает замедленное разрушение сварных конструкций.  [c.347]

Для плавки алюминиевых и медных сплавов, а также чугунов применяют открытые индукционные тигельные печи промышленной частоты емкостью от 0,4 - 1,0 до 25 - 60 т и производительностью 0,5 - 6,0 т жидкого металла в 1 ч. Независимо от марки выплавляемого сплава и емкости индукционные тигельные печи имеют одинаковые конструкционные узлы и отличаются в основном производительностью и мощностью электрооборудования.  [c.246]

Цинковые, алюминиевые, магниевые, медные сплавы  [c.42]

Сталь и медные сплавы Чугун, алюминиевые и магниевые сплавы  [c.76]

При электродуговой сварке под действием тепла, выделяемого электрической дугой, соединяемые элементы / (рис. 4.1, а) оплавляются, и оплавленный металл вместе с металлом электрода 2, обмазанного защитным покрытием, образует прочный шов. При расплавлении электрода защитная обмазка выделяет большое количество шлака и газа, которые способствуют более устойчивому горению дуги и защищают расплавленный металл от окисления кислородом воздуха. Этим способом свариваются конструкционные стали любых марок, чугун, алюминиевые и медные сплавы.  [c.399]

Как и при литье алюминиевых и медных сплавов, давление препятствует возникновению развитой дендритной структуры (при давлении 6—8 МН/м ).  [c.65]

Не допускаются контакты непосредственно с алюминиевыми сплавами, кроме сплавов системы А1—Mff, с медью и медными сплавами, с никелем и никелевыми сплавами, со сталями и благородными металлами, а также с деревом и текстолитом.  [c.143]

Заводами СССР изготовляются пять марок никеля (табл. 2) чистотой от 97,6 до 99,99%. Такой никель предназначается для дальнейшей переработки на полуфабрикаты (листы, лепты, полосы, прутки и проволоку), изготовления сплавов на никелевой основе и в качестве легирующего компонента в сталях, медных, кобальтовых, алюминиевых и других сплавах.  [c.252]

Трубы из медных и алюминиевых сплавов диаметром более 16 мм Листы, ленты, полосы из цветных тугоплавких металлов с а= I- 60 МСм/м, из ферромагнитных сталей  [c.151]

Температура нагрева для горячей деформации зависит в первую очередь от природы деформируемого материала — сталь, медные сплавы, алюминиевые сплавы и другие его химического состава — углеродистая, низколегированная, аустенитная сталь, а также от толщины заготовки. Однако в любых случаях температура нагрева должна быть значительно ниже температуры солидуса сплава. Если металл перегрет, то могут наступить пережог , выражающийся в интенсивном окислении границ зерен, и, как следствие, охрупчивание металла. Пережог — дефект нагрева, который не может быть исправлен. Длительное пребывание металла при температуре несколько меньшей, чем температура пережога, может привести к значительному росту зерна и снижению пластических свойств заготовки — явление перегрева. В значителыюм большинстве случаев перегрев может быть исправлен дополнительной термической обработкой.  [c.399]


Существует несколько систем классификации металлов и сплавов. Наиболее простой и естественной является классификация по основному эгементу железные сплавы медные сплавы алюминиевые сплавы магниевые сплавы титановые сплавы никелевые сплавы цинковые сплавы и т. д. Железо и железные сплавы иначе называют черными металлами, все остальные простые металлы и их сплавы — цветными металлами.  [c.17]

При дорекристаллизационном отжиге холоднодефорМирован- ных медных сплавов (алюминиевых и хромовых бронз, меднонике--левых сплавов) можно встретиться с огневой хрупкостью из-за образования пор по границам зерен. Поры возникают при отжиге под действием остаточных напряжений и по аналогии с порами,-образующимися при ползучести, растут вследствие конденсации вакансий. Для борьбы с огневой хрупкостью продолжительность отжига в соответствующем критическом температурном интерйале должна быть минимальной.  [c.107]

Хим. Оке. прм. Ан. Оке. бхр Ан. Оке. 9хр Защитно- декоратив ные Окисное Сталь Медь и медные сплавы Алюминий и алюминиевые сплавы п П Н ТВ ТС П Н А 6-9 9—12 4—8 Не ограничивается  [c.142]

Каждый металл и сплав имеет свой строго определенный температурный интервал горячей обработки давлением. Например, алюминиевый сплав АК4 470—350 °С медный сплав БрАЖМц 900—750 °С титановый сплав ВТ8 1100—900 "С. Для углеродистых сталей температурный интервал нагрева можно определить по диаграмме состояния (см. разд. 1) в зависимости от содержания углерода. Например, для стали 45 температурный интервал 1200—750 °С, а для стали УЮ 1100—850 °С.  [c.60]

Обрубка отливок — процесс удаления с отливки прибылей, литников, выпоров и заливов (облоев) по месту сопряжения иолу-форм. Обрубку производят пневматическими зубилами, ленточными и дисковыми пилами, газовой резкой и на прессах. Литники от чугунных отливок отбивают молотками сразу же после выбивки из форм перед удалением стержней. Литники и прибыли от стальных отливок отрезают газовой или плазменной резкой. Ленточные и дисковые пилы используют для обрубки отливок из алюминиевых, магниевых медных сплавов. После обрубки отливки зачищают, удаляя мелкие за ЛИВЫ, остатки прибылей, выпоров и литников. Зачистку выполняют маятниковыми и стационарными шлифовальными кругами, пиевмати ческими зубилами, газоплазменной обработкой и другими способами  [c.146]

Отлпвкн под низким давлением получают в кокилях, песчаных и оболочковых формах и формах для литья по выплавляемым моделям. Этот способ литья значительно сокращает расход металла на литники, улучшает заполняемость форм, повышает плотность и герметичность отливки. Литьем под низким давлением изготовляют тонкостенные отливки корпусного типа из алюминиевых, магниевых, медных сплавов и реже из стали массой от нескольких десятков граммов до 50 кг.  [c.154]

Плазменной струей, полученной в столбе дугового разряда независимой дуги, разрезают нез)лектропроводные материалы (напри мер, керамику), тонкие стальные листы, алюминиевые и медные сплавы, жаропрочные сплавы и т. д. При плазменной резке используют аргон, его смесь с водородом, воздух и другие газы. Скорость резки плазменной дугой при прочих равных условиях выше скорости резки плазменной струей. Плазменную резку выполняют специальным резаком, называемым плазмотроном.  [c.210]

Возможны три случая 1. аг > 1 (стяжка деталей из алюминиевых, магниевых и медных сплавов стальными болтами и болтами из титановых сплавов). При нагреве в таких соединениях возникает натяг, пропорцио налвный фактору I (аг — 011). При охлаждении до минусовых температур этот фактор становится отрицательным. Следовательно, первоначальный сборочный натяг уменьщается, т. е. соединение ухудшается.  [c.361]

А. Вёлер ввел понятие о физическом пределе выносливости — максимальном циклическом напряжении, при котором нагрузка может быть приложена неограниченное число раз, не вызывая разрушения при выбранной базе (числе циклов до разрушения К). Для металлических материалов, не имеющих физического предела выносливости, предел выноашлости (7ц - значение максимального по абсолютной величине напряжения цикла, соответствующее задаваемой долговечности (числу циклов до разрушения). Для металлов и сплавов, проявляющих физический предел выносливости, принята база испытаний Ю циклов, а для материалов, ординаты кривых усталости которых по всей длине непрерывно уменьшаются с ростом числа циклов, - 10 циклов (рис. 2). Первый тип кривой особенно характерен для ОЦК - металлов и сплавов, хотя может наблюдаться при определенных условиях у всех металлических материалов с любым типом кристаллической решетки, второй тип -преимущесгвеипо у П (К - металлов и сплавов (алюминиевые сплавы, медные сплавы и др.). N(11 и N( 2 на рис.2 обозначают базовые числа циклов нагружения. На рис. 3 представлены основные параметры цикла при несимметричном нагружении и возможные варианты циклов при испытаниях на усталость.  [c.7]

Для изготовления деталей машин широко прнменятат стали и чугуяы, а также алюминиевые, магниевые, титановые и медные сплавы.  [c.271]

Исходный диаметр do на практике выбирается в зависимости от материала отливки для медных сплавов — 5 мм, для чугунов и алюминиевых сплавов — 7, для сталей— 10 мм. Если указанный в чертеже размер отверстия меньше полученного расчетом dmtn, отверстие литьем не изготавливают.  [c.58]


В зависимости от склеиваемых материалов и условий работы (характер нагрузки, температура и др.) применяют различные марки клея, например клей универсальный БФ-2 и БФ-4 (для склеивания стали, алюминиевых и медных сплавов, стекла, пластмасс, кожи как между собой, так и в любом их сочетании) клей 88 (для склеивания металлов и неметаллов, дюралюминия с кожей и резиной, дерева с резиной и других материалов) клеевые композиции на основе эпоксидной смолы ЭД-20 (для склеивания и герметизации неразъемных соединений из стали, алюминия, керамики, стекла и других материалов, обеспечивая термостойкое соединеггае) и др. Толпщ-на клеевой прослойки рекомендуется в пределах  [c.54]

Алюминиевые сплавы. Эти сплавы делятся на литейные (АЛ), обладающие хорошими литейными свойствами, и деформируемые (АД), хорошо обрабатывающиеся давлением. Для повышения коррозионной стойкости дуралюмина листовые полуфабрикаты плакируют (покрывают) чистым алюминием. Алюминий-магниевые и алюминий-медные сплавы (дуралюмины) применяются для изготовления нагруженных деталей (корпусов, оснований, шасси, заклепок, трубопроводов, емкостей и других), алюмипий-кремнис-тые литейные сплавы (силумины)—для изготовления среднепа-  [c.213]

Раствор корректируется теми же методами, что и для Ni — Р-покрытий. Ni — Со — Р-покрытия можно осаждать на детали из железных, медных и алюминиевых сплавов, а также из неметаллов. Покрытия блестяшие, светлые с серебристым оттенком, типичная для никелевых осадков желтизна отсутствует Толщина осадков на деталях любой конфигурации равномерная. Состав этих покрытий зависит от соотношения концентрации солей никеля и кобальта в растворе Когда оно равно 1 1, в осадке содержится около 65% никеля, при соотношении 1 2 — около 50 % никеля Отношение Ni. o в сплаве обычно в 1.4 раза больше, чем в растворе  [c.65]


Смотреть страницы где упоминается термин Медные сплавы алюминиевые : [c.70]    [c.264]    [c.405]    [c.812]    [c.341]    [c.181]    [c.305]    [c.116]    [c.245]    [c.65]    [c.89]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.136 ]



ПОИСК



1---медные

Алюминиево-кремниево-медно-магниевые сплавы -

Алюминиево-магниево-цинково-медные сплавы -

Алюминиево-медно-кремниевые сплавы

Алюминиево-медно-магниевые сплавы

Алюминиево-цинково-медные сплавы

Алюминиевые, магниевые и медные сплавы, применяемые для ковки и горячей штамповки

Заливка сплавов алюминиевых — Температура заливаемых сплавов медных 321 — Температура заливки

Модификаторы — Назначение для сплавов: алюминиевых 160 магниевых 161 медных

Окисление медно-алюминиевых сплавов

Оксидирование химическое отливок из алюминиевых, магниевых, медных и цинковых сплавов — Составы растворов

Отливки алюминиевых сплавов медных сплавов — Вес — Отклонения допускаемые 14 — Размеры Отклонения допускаемые

Пасты натирочные — Состав при литье медных, алюминиевых и магниевых сплавов

Припои для пайки алюминиевых сплавов медных сплавов

Провода неизолированные медные, алюминиевые и из дтюминиевого сплава

Прутки из сплавов алюминиевых из сплавов медных — Механические качества

Сплавы алюминиево-кремниево-медно-магниесые АЛЗ

Сплавы алюминиево-магниеЕО-цинково-медные

Сплавы алюминиево-магниего-цинково-медные

Сплавы алюминиево-медно-магниево-кремниеьые

Сплавы алюминиево-медно-магниевые игрек)

Сплавы алюминиево-медно-магпиево-кремниевые

Сплавы алюминиево-медные АЛ 12 с повышенным содержанием меди

Сплавы алюминиево-медные вторичные

Сплавы алюминиево-медные свойства

Сплавы алюминиево-цинково-медные вторичные

Сплавы алюминиевые литейные медные

Сплавы алюминиевые литейные на медной основе

Сплавы алюминиевые — Свойства медные — Свойства

Сплавы алюминиевые — Температура медные — Температура плавления

Сплавы магниеалюминиевые медно-алюминиевые — Термическая

Сплавы медные



© 2025 Mash-xxl.info Реклама на сайте