Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы определения жаропрочности

ОСТ 108.901.102-78. Котлы, турбины и трубопроводы. Методы определения жаропрочности металлов. Л. Изд. НПО ЦНИИТМАШ. 1979.  [c.264]

ОСТ 108.901.102-78 Котлы, турбины и трубопроводы. Методы определения жаропрочности металлов.  [c.772]

МЕТОДЫ ОПРЕДЕЛЕНИЯ ЖАРОПРОЧНОСТИ  [c.11]

Метод определения долговечности предусматривает испытания жаропрочных материалов при одновременном действии статических растягивающих и переменных изгибающих напряжений в условиях ползучести при высоких температурах. С целью ускорения испытаний пределы ограниченной выносливости определяют как разность между пределом ограниченной выносливости при симметричном. .цикле и статическим растягивающим напряжением при сохранении прежней базы.  [c.118]


Рассмотрены основные типы повреждений металла оборудования тепловых электростанций, работающего при высоких температурах. Показано влияние физических и технологических факторов на характеристики жаропрочности, работоспособность и долговечность теплоустойчивых сталей. Приведены расчетно-экспериментальные методы определения характеристик жаропрочности и прочности сталей и средства технической диагностики оборудования.  [c.2]

Первые научные работы по остаточным напряжениям И. А. Умова, Н. В. Калакуцкого были проведены более 100 лет назад, однако интерес к ним начал проявляться лишь в последние десятилетия (с 20—30-х годов) [31 ]. В настоящее время создан ряд капитальных трудов, посвященных разработке методов определения остаточных напряжений и изучению их появления в конструкционных материалах после различных видов механической обработки [4, 43, 60, 80]. Вместе с тем, еще мало имеется работ по исследованию влияния остаточных напряжений на характеристики усталости конструкционных материалов, особенно для жаропрочных и титановых сплавов, и на устойчивость их в условиях эксплуатации.  [c.54]

Основным методом определения наклепа в исследуемых жаропрочных сплавах являлся рентгеноструктурный анализ, вспомогательным — метод измерения микротвердости на поверхности косых срезов последний позволил одновременно определять степень наклепа и характер разупрочнения.  [c.84]

Существуют различные методы определения ползучести, предусматривающие испытания на кручение, изгиб, сжатие или растяжение. Последний вид испытаний является наиболее распространенным. Испытания на ползучесть отличаются от обычных испытаний на растяжение тем, что они предполагают длительное воздействие нагрузки при постоянной температуре и измерение в процессе испытания очень малых деформаций в зависимости от времени. Часто встречается также и другая характеристика оценки жаропрочности материала предел длительной прочности, представляющий собой напряжение, вызывающее разрушение образца при определенной температуре за соответствующий интервал времени.  [c.227]

В книге описаны неразрушающие методы определения механических, жаропрочных и структурных характеристик металла энергетического оборудования. Приведены сведения об условиях работы основных элементов котлотурбинного оборудования электростанций. Систематизированы данные об изменении структуры и свойств металла в процессе длительной его работы при высоких температурах. Освещены новые методы контроля и наблюдения за металлом энергетического оборудования.  [c.87]


Работа указанных конструкций в широком диапазоне температур от комнатной до 900—1000°-С требует всесторонней оценки жаропрочности входящих в них сварных соединений — основной характеристики, определяющей эксплуатационную надежность изделия в данных условиях. При ее определении должны быть учтены особенности сварных соединений и прежде всего неоднородность строения и свойств отдельных зон соединения, а также наличие в районе стыка концентраторов напряжений различного характера и происхождения, оказывающих заметное влияние на условия их работы. Пренебрежение этими факторами и определение свойств сварных соединений лишь с помощью классических методов оценки жаропрочности сталей и сплавов  [c.3]

Основные определения. Под жаропрочностью понимают комплекс свойств сталей и сплавов, обеспечивающих работоспособность деталей при повышенных температурах без существенной пластической деформации и разрушения. Наиболее важным методом испытания жаропрочности является определение характеристик ползучести, длительной прочности и релаксации напряжений.  [c.350]

Свойства металлов И сплавов зависят от состава и структуры. Их определяют различными методами, которые нужно разделить на механические, физические, технологические, химические и специальные (определение жаропрочности, коррозионной стойкости и т. д.).  [c.81]

В книге рассматривается комплекс вопросов, связанных г размерным износом режущих инструментов при обработке жаропрочных и высоколегированных материалов, применяе- мых во многих отраслях машиностроения. Анализируются существующие и излагаются новые методы определения характеристик обрабатываемости и оптимальных режимов резания с учетом размерной стойкости инструмента и точности обработки и приводятся соответствующие номограммы.  [c.2]

В настоящей главе рассмотрены основные вопросы точения коррозионностойких и жаропрочных сталей и сплавов, а также титановых сплавов показано влияние на обрабатываемость резанием этих материалов их химического состава и физикомеханических свойств, а также термической обработки. Освещены разработанные в последние годы некоторые ускоренные методы определения обрабатываемости при точении, которые по-  [c.43]

Дальнейшее развитие металлургии и машиностроения привело к необходимости изменения, уточнения к дополнения некоторых важнейших ГОСТ. Введены новые ГОСТ 380-,50, Сталь углеродистая горячекатанная обыкновенного качества 2335-50, Поковки из углеродистой стали обш,его назначения 2334-50, Поковки из легированной стали общего назначения 5950-51, Сталь инструментальная легированная 5952-51, Сталь инструментальная быстрорежущая 5632-51, Сталь высоколегированная нержавеющая, жаропрочная и сплавы с высоким омическим сопротивлением 5639-51, Сталь. Метод определения величины зерна 5657-51, Сталь конструкционная. Испытание на прокаливаемость и другие.  [c.5]

В книге рассмотрены вопросы оптимизации процессов резания конструкционных, нержавеющих и жаропрочных сталей и сплавов, показана сущность метода определения параметров процесса резания и автоматического осуществления оптимальных режимов резания, соответствующих максимальной размерной стойкости инструмента, даны рекомендации по повышению размерной стойкости инструмента, производительности и экономичности обработки.  [c.351]

Рекомендуемый метод определения характеристик жаропрочности приводится в приложении 6.  [c.193]

Предлагаемый метод определения характеристик жаропрочности материалов допускает экстраполяцию по параметру I в пределах одного порядка, но до напряжений, не меньших минимальных, полученных при испытаниях на длительную прочность при температуре Г2.  [c.413]

Жаропрочные стали. Методы определения механических свойств при высоких температурах. Характеристики жаропрочности стали. Пути повышения жаропрочности. Классификация жаропрочных сталей перлитные, мартенсит-ные, аустенитные с карбидным и интерметаллидным упрочнением. Жаропрочные сплавы.  [c.9]


Среди расчетных методов определения циклической жаропрочности наибольшее распространение получили методы, основанные на использовании гипотезы аддитивности повреждений во временной и деформационной трактовке, в соответствии с которыми разрушение наступает тогда, когда равны единице суммы относительных долговечностей или относительных деформаций  [c.164]

Определение жаропрочности Стандартные методы контроля пределов прочности при растяжении и изгибе при высокой температуре о нагрузкой в течение 100 и 1000 ч Жаропрочные сплавы  [c.71]

Оценка остаточного ресурса проводится по запасу прочности как отношению предела длительной прочности стали к эквивалентным напряжениям. Поэтому на точность определения ресурса влияет надежность выбранных характеристик жаропрочности. Методы повышения надежности этих характеристик описаны в гл. 2,3. При низких значениях коэффициента запаса прочности рекомендуется [16, 22] проводить оценку поврежден-ности рассматриваемых деталей.  [c.30]

Используемое в промышленности естественное и искусственное старение сплавов, сопровождающееся выделением кристаллов новых фаз, является одним из основных методов улучшения определенных свойств некоторых сплавов, например повышения механической прочности алюминиевых, медных и никелевых сплавов, повышения жаропрочности никелевых, увеличения коэрцитивной силы медных сплавов и т. д.  [c.9]

Поперечные градиенты являются источниками ошибок при определении предела прочности., испытуемого материала, а продольные искажают характеристики пластичности и определяемые по обычной методике значения пределов упругости и текучести. В случае длительных статических испытаний пластичных материалов результаты нельзя считать достоверными вследствие изменения сечения образца на отдельных участках и возникающих локальных тепловых концентраций. Метод целесообразен при испытаниях металлокерамических материалов типа карбида кремния, а также хрупких жаропрочных, материалов с высоким электросопротивлением при условии соблюдения мер для выравнивания температуры по всему объему образца.  [c.285]

Такая оценка не всегда может быть сделана по значениям механических характеристик, определяемым методами механических испытаний. Поэтому разработка и применение специальных методов испытания материалов на изнашивание для определения их износостойкости в различных условиях трения столь же необходимы, как и постановка специальных лабораторных испытаний при оценке жаропрочности, сопротивления усталости и других характеристик служебной прочности.  [c.229]

Метод внутреннего трения дает оценку качественной стороны дефектов структуры — характера их подвижности по решетке под действием температуры и внешних напряжений. Он является одним из эффективных неразрушающих методов оценки технологических и эксплуатационных показателей качества вольфрамовых проволок в определении температуры начала первичной и вторичной рекристаллизации, уровня жаропрочности и склонности к ползучести, уровня термоциклической прочности образцов, позволяет установить оптимальные режимы термической обработки.  [c.34]

Методом направленной кристаллизации получают 1) отливки из жаропрочных сплавов со структурой, представляющей собой совокупность дендритных столбчатых зерен, ориентированных вдоль определенных кристаллографических направлений, в которых действуют максимальные рабочие напряжения в деталях при этом в пределе устраняются поперечные границы зерен, являющиеся потенциальными очагами разрушений 2) монокристал-лические отливки 3) эвтектические композиты — отливки эвтектической структуры с нитевидными (или пластинными) волокнами ведущей упрочняющей фазы (например, карбидов), ориентированными в направлении кристаллизации и распределенными во второй матричной фазе.  [c.360]

Одной из основных характеристик материалов, определяющих их жаропрочность, является стабильность их структуры и свойств при высоких температурах. Для определения характера идущих при высоких температурах структурных превращений используются методы металлографического исследования с помощью оптического и электронного микроскопов, фазового и рентгеноструктурного анализа, а также вакуумной металлографии. Задачей этого комплекса исследований является установление механизма структурных превращений и характера образующихся фаз, кинетики их развития, а также температурного интервала, в котором идут эти процессы. С этой целью образцы подвергаются выдержкам не только при рабочей, но и при других температурах, причем, как и при испытаниях на длительную прочность, максимальная длительность старения образцов должна быть не менее чем на порядок меньше ресурса работы изделия. При более высоких температурах, чем рабочая, максимальная длительность выдержки может быть соответственно уменьшена. Так, для оценки процессов старения сварных соединений, предназначенных для работы в течение 10 ч при 600° С максимальная выдержка образцов при этой температуре не должна быть менее 10 ч при 650° С не менее 3-10 ч, а при 700° С не менее 500 ч. Соответственно должны меняться и промежуточные выдержки. Для рассматриваемого случая желательно их принимать следующими при 600° С —  [c.119]

Паяные соединения должны обладать необходимой прочностью, коррозионной устойчивостью, герметичностью, жаропрочностью, жаростойкостью, устойчивостью к вибрациям и др. Для определения столь разнообразных и часто противоречивых свойств необходимо выбрать методы исследования, обеспечивающие всестороннюю Оценку паяных соединений.  [c.223]

Оценка коррозии ло потере в весе упрощает измерения, поскольку она не требует предосторожностей для сохранения продуктов коррозии. Однако этот показатель коррозии вносит и свои осложнения, так как удаление окалины с поверхности металлов подчас затруднительно. Поэтому выбрать данный показатель следует только в случаях, когда имеется сравнительно большая скорость коррозии. Простейшая установка для изучения окисления металлов весовым методом, т. е. для испытания в атмосфере воздуха, показана на рис. 31. Образцы, подготовленные обычным способом, помещают либо в открытые тигли, которые могут быть из любого огнеупора фарфоровые, шамотные или кварцевые, либо, еще проще, укладывают в фарфоровые лодочки. При этом необходимо предусмотреть, чтобы образующиеся окислы не взаимодействовали с материалом тигля. Для этого образцы следует устанавливать не непосредственно на дно тигля, а на подставки их жаростойкого материала (нихромовая проволока, серебро и др.). При испытании серии образцов тигли устанавливают в гнезда подставки, изготовленной из нержавеющей, жаропрочной стали или нихрома и помещают в печь с регулируемой температурой, В качестве таких печей могут быть использованы различные горизонтальные муфельные печи. Тигли или подставки следует располагать на равном расстоянии от стенок печи для того, чтобы избежать разницы в температуре испытания отдельных образцов, которая не должна превышать 10—15°. Испытания проводят двумя способами 1) выдерживают образцы в печи при выбранной температуре определенное время, после чего вынимают их, охлаждают, выдерживают некоторое время в эксикаторе и взвешивают 2) делят испытания на определенное число промежутков, например 100 час. на 10 промежутков по 10 час. каждый. После каждых 10 час. испытаний образцы вынимают из печи, охлаждают, выдерживают некоторое время в эксикаторе, взвешивают и вновь помещают в печь.  [c.83]


Наиболее простым методом испытания на жаропрочность является определение механических свойств (предела пропорциональности, текучести, временного сопротивления, удлинения и сжатия) при высоких температурах. Для производства  [c.30]

Особенности поведения металлов в области высоких температур вызывают необходимость применения специальных методов испытаний и установления особых критериев механической прочности в нагретом состоянии. В большинстве случаев жаропрочность оценивается с помощью определения следующих характеристик  [c.325]

В книге содержатея результаты многолетних исследований авторов, в том числе по расчетно-экспериментальному методу определения жаропрочных свойств, по влиянию восстановительной термической обработки на свойства металла. Главы 1, 2, 6.6 написаны Т. Г. Березиной, гл. 3, 4 — И. И. Труниным, гл. 5, 6 — Н. В. Бугаем.  [c.4]

Основным методом определения длительной прочности является испытаниг ри растягивающей нагрузке. Этот метод регламентирован ГОСТом Ю14б —62, по нему, в частности, проводятся приемо-сдаточные испытания промышленных сплавов на жаропрочность, имеющие массовый характер.  [c.132]

На методы определения предела ползучести раапространяется ГОСТ 3248—60. Иопытания применяют преимущественно для жаропрочных металлов и сплавов.  [c.49]

Низколегированная сталь. Сталь 15Х1М1ФЛ, закристаллизованная под давлением 200 МНУм , по механическим свойствам не уступает катаной трубной стали того же состава и значительно превосходит литую обычными методами сталь Ств=800 МН/м2, б=8%- Кроме того, ее жаропрочность в 1,4 раза выше, чем у обычной стали. Это объясняется улучшением состояния границ, по которым идет более 85% общей деформации материала, а также увеличением количества свободной карбидной фазы в структуре [13]. Суммарная масса карбидного осадка, определенного при помощи метода электролитического растворения образцов, после нормализации от 960° С составила в среднем 3,66 /о от массы растворенного металла, а свободно затвердевшей стали 3,34%.  [c.137]

Естественно ожидать, что характеристики субструктуры металла определяют его длительные жаропрочные характеристики. Исследованиями Донтехэнерго установлена линейная зависимость предела длительной прочности сгд от параметра субструктуры [115]. Точность измерения угла разориентировки между блоками составляет 10%, поэтому точность определения сгд новым методом составляет 10% по отношению к сгд.п, определенной испытаниями на длительную прочность.  [c.200]

В последние годы для жаропрочных сплавов начали проводиться работы по новым технологическим схемам термомеханической обработки, среди которых представляют наибольший интерес механотермическая обработка (МТО) и высокотемпературная термомеханическая обработка (ВТМО). Более перспективным, главным образом из-за легкости осуществления, является метод ВТМО, который заключается в совмещении пластической деформации, проводимой при температурах, превышающих температуру рекристаллизации, с закалкой. Этот процесс был впервые использован Садовским с сотрудниками в 1958 г. для повышения жаропрочности аустенитной стали ЭИ481. Основное требование, которое предъявили авторы к нормальному процессу ВТМО, — полное подавление рекристаллизации. Для осуществления этого требования необходимо строго соблюдать режимы деформации, подбирать определенные способы деформирования и ограничивать габариты изготавливаемых изделий до 10—12 мм.  [c.35]

Метод масс-спектрометрического определения газовыделения был использован при изучении трения жаропрочных сталей ЭИ283 и ЭИ395 по схеме кольцо — полусферический ползун в вакууме 1 -10 тор [7] (нормальная нагрузка 2,7 кГ] скорости скольжения  [c.30]

Аварийные последствия локальных разрушений сварных стыков аустенитных паропроводов и узлов из хромомолибденованадиевых сталей при эксплуатации энергетических установок, а также появление трещин в околошовной зоне при термической обработке сварных конструкций из конструкционных и теплоустойчивых сталей, жаропрочных аустенитных сталей и высоконикелевых сплавов вызвали необходимость в проведении больщого комплекса исследований. Они выполнялись в направлениях определения механизма явления, разработки методов испытания и принятия мер по исключению опасности этого вида разрушений. Современные представления о механизме локальных разрушений при эксплуатации и термической обработке изложены в пп. 8 и 12. В данном параграфе приведено описание методов лабораторной оценки склонности сварных соединений к рассматриваемым разрушениям. Виды испытаний конструктивной прочности сварных узлов при высоких температурах изложены в п. 16.  [c.125]

Капиллярные методы применяют в заводских лабораториях и в цехах для определения поверхностных дефектов типа трещин, пор, рыхлот, волосовин и других нарутиений сплошности на поверхностях деталей из жаропрочных неферромагнитных сплавов на основе меди и из пластмасс  [c.81]

Надежность определения срока безаварийной работы элементов энергоустановок, изготовляемых из жаропрочных материалов, зависит, в первую очередь, от достоверности оценок характеристик прочности и пластичности в условиях ползучести. Точность прогноза обеспечивают объемом экспериментальных данных (числом испытанных образцов, максимальной продолжительностью отдельных испытаний и диапазоном температур и силовых нагрузок). С увеличением времени до разрушения (уменьшением напряжения) при постоянной температуре возможно изменение механизмов процесса ползучести и, как следствие, изменение коэффициентов в уравнениях температурно-силовой зависимости прочности. Поэтому при решении задач о прогнозировании характеристик жаропрочности на большие сроки службы необходимо особо тщательно составлять программу. эксперимента и проводить отбор результатов испытаний так, чтобы в них была отражена роль процессов, определяющих поведение материалов при рабочей температуре и длительной эксплуатации. В некотором температурном интервале возможен эквивалент между температурой и временем повышением температуры достигается ускорение развития идентичных изменений структурного состояния и ведущих механизмой ползучести. В этом состоит суть методов прогнозирования характе-  [c.35]


Смотреть страницы где упоминается термин Методы определения жаропрочности : [c.236]    [c.198]    [c.33]    [c.321]    [c.499]    [c.105]    [c.266]   
Смотреть главы в:

Сварка жаропрочных нержавеющих сталей  -> Методы определения жаропрочности



ПОИСК



Жаропрочность

Жаропрочность — Определение

Жаропрочные КЭП



© 2025 Mash-xxl.info Реклама на сайте