Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генераторы электрические синхронные

Синхронный генератор — электрическая синхронная машина, частота вращения которой не зависит от нагрузки и находится в строгом постоянном отношении к частоте сети переменного тока, обратно пропорциональному числу пар полюсов генератора. Синхронный генератор, как и двигатель, состоит из неподвижной (статора) и вращающейся (ротора) частей. Цилиндрическая станина статора чугунная литая. В верхней части станины сделан проем прямоугольной формы для установки блока регулирования напряжения. На внутренней поверхности станины равномерно по окружности расположены продольные ребра для запрессовки сердечника статора. Сердечник запрессован таким образом, что между его наружной поверхностью и продольными ребрами образуются каналы, по которым проходит через генератор охлаждающий воздух.  [c.26]


Электрический привод прокатных станов стал внедряться после того, как появилась схема генератор—электродвигатель. В этой схеме генератор обеспечивает синхронность работы всех электродвигателей, их реверсивность и изменение частоты вращения. Подобные схемы электропривода стали применять в сложных и крупных станках, например строгальных.  [c.13]

Одним из основных направлений в развитии электроэнергетики с введением в жизнь трехфазной системы токов становится применение все более мощных генераторов электрической энергии. На электрических станциях основным видом источника переменного тока делается синхронный генератор с приводом от паровой или гидравлической турбины [34].  [c.80]

Самыми мощными электрическими машинами являются генераторы электрической энергии, относящиеся к типу синхронных машин переменного тока. Роторы таких генераторов представляют собой электромагниты с 2р-парами полюсов. Рабочая частота вращения ротора со = 50/р Гц.  [c.519]

Несколько видоизменив схему рис. 123, можно получить возможность измерять частотные характеристики ультразвуковых излучателей. Сущность метода заключается в автоматическом изменении частоты электрического генератора и синхронной регистрации интенсивности света в дифракционных порядках.  [c.217]

Современное состояние автоматизации проектирования ЭМП характеризуется следующим. Разработаны научно-методические основы, созданы и внедрены САПР для выполнения проектных расчетов и конструирования различных классов ЭМП асинхронных двигателей, синхронных генераторов, крупных электрических машин, трансформаторов, коммутационной электроаппаратуры и др. Однако действующие САПР ЭМП существенно отличаются друг от друга даже в тех случаях, когда они предназначены для проектирования одного и того же класса ЭМП.  [c.263]

Для электрических коррозионных исследований часто бывает нужно иметь несколько измерительных самопишущих приборов, ведущих синхронную запись эти приборы иногда оказываются довольно тяжелыми. Чтобы можно было быстро и надежно доставить их к отдаленным точкам измерения на местности, целесообразно размещать такие приборы в передвижной лаборатории на автомобильном шасси. Для работ по обслуживанию и контрольных измерений обычно бывает достаточно иметь комбинированный легковой автомобиль. Напротив, для длительной записи блуждающих токов рекомендуется применять автомобиль с крытым кузовом, в котором можно было бы работать стоя. В разделе З.З (табл. 3.2) приведены характеристики важнейших измерительных приборов. Время для сборки электрических измерительных схем может быть сокращено благодаря применению щита с распределительными шинами (швейцарского щита), подключенного к измерительным клеммам на наружной стенке передвижной лаборатории и к рабочим клеммам измерительных приборов. Для электрического питания и обеспечения работы самопишущих приборов целесообразно иметь аккумуляторную батарею на 12 В и умформер (генератор) на 220 В. Все результаты, данные о длительности измерений, времени их проведения и прочие факторы могут быть прямо на месте занесены в протокол измерений. При колебаниях измеряемых величин во времени  [c.81]


Если синхронный генератор работает на электрическую сеть совместно с другими генераторами, то его режим поддерживается возможно ближе к синхронному числу оборотов всей группы генераторов, равному  [c.373]

Генератор электростанции является синхронной электрической машиной. Поэтому, если он работает на внешнюю сеть, частота его вращения определяется частотой сети. На турбине имеется и постоянно включен регулятор частоты вращения (РЧВ), который открывает или закрывает регулирующие клапаны турбины на величину, пропорциональную отклонению частоты сети (а следовательно, и частоты вращения турбины) от номинального значения. Таким образом, если, например, потребление энергии в сети возрастает, это приводит к понижению частоты системы и регулирующие клапаны всех турбогенераторов системы приоткрываются, увеличивая мощность. При  [c.144]

Генерирование электрической энергии переменного тока производится синхронными генераторами, как и в машинах постоянного тока. В синхронном генераторе э. д. с. возникает вследствие взаимного пересечения проводников и магнитных силовых линий (правило правой руки).  [c.533]

На фиг. 9 дана схема управления двигателями постоянного тока сортового стана. Синхронный двигатель СД приводит во вращение два генератора Г1 и Г2 постоянного тока, которые подают энергию на главные шины. От последних питаются прокатные двигатели. Все электрические машины, в том числе и прокатные двигатели, устанавливаются в электромашинном помещении. Управление прокатными двигателями производится оператором с поста управления в прокатном цехе. Вследствие значительной мощности прокатные двигатели и питающие их генераторы  [c.1058]

Первые синхронные генераторы, приводимые в действие паровыми машинами или двигателями внутреннего сгорания через ременную передачу, работали с малым числом оборотов окружная скорость ротора для таких машин составляла не более 15—25 м/с. С ростом мощности электрических генераторов повышалось требование равномерности вращения, что не обеспечивалось ни паровой машиной, ни двигателями внутреннего сгорания с их пульсирующим движением поршня и кривошипно-шатунным механизмом. В связи с этим в начале 90-х годов были разработаны специальные генераторы маховикового типа, в которых для уменьшения неравномерности хода была увеличена инерция вращающихся частей. В этих генераторах вращающиеся индукторы одновременно играли роль маховиков для первичного двигателя. Первичные поршневые двигатели накладывали определенные ограничения на конструкции синхронных генераторов их приходилось строить с большим числом полюсов, что, в свою очередь, увеличивало расход активных материалов и потери энергии в машине. Таким образом, хотя паровая машина к концу XIX в. достигла высокой степени совершенства, она не годилась для привода мощных электрических генераторов, так как не позволяла сконцентрировать большие мощности в одном агрегате и создать требуемые высокие скорости вращения. На смену паровым машинам пришли паровые турбины. Первоначально использовали сравнительно тихоходные турбины конструкции шведского инженера Г. П. Лаваля [35].  [c.81]

В режиме двигателя генератор работает как синхронный компенсатор, повышая os ф и тем самым уменьшая потери в электрической сети. С этой целью перевод некоторых агрегатов на моторный режим осуществлялся еще в двадцатых годах. Сейчас вопрос этот приобрел иное значение и особую актуальность в связи с новыми требованиями к маневренным качествам блоков.  [c.90]

Параллельная работа турбоагрегата имеет место в тех случаях, когда данный генератор включен параллельно с другими генераторами в одну электрическую сеть. Это может быть сеть только данной ТЭЦ или нескольких станций предприятия (гидравлических, паровых, дизельных) либо энергосистема большой мощности. При параллельной работе все генераторы системы работают синхронно с одной частотой, а при одинаковом числе полюсов— с одной скоростью вращения. Генераторы сети (системы) вынуждают генератор данной турбины вращаться со скоростью, отвечающей частоте системы или сети предприятия.  [c.105]


Электрический генератор имеет мощность 15 000 ква. Пусковой двигатель четырехполюсный. Мощность, потребляемая для пуска установки, составляет 2—3% от номинальной мощности установки, и двигатель работает не более 3—5 минут. После окончания пуска этот двигатель отсоединяется от вала газовой турбины. Он служит также для разгона электрического генератора до полной скорости, когда последний используется без газовой турбины в качестве синхронного компенсатора. В этом случае двигатель соединяется с валом электрического генератора через зубчатую передачу, включающую в себя и магнитную синхронизирующую муфту фирмы Зульцер, которая дает возможность производить соединение и разъединение валов во время работы. Эта муфта и двойная зубчатая передача позволяют переходить от выработки активной мощности к выработке реактивной мощности и останавливать газовую турбину без  [c.90]

Вал турбокомпрессорной группы соединен с валом электрического генератора гибкой быстроразъемной муфтой. Электрический генератор используется как синхронный компенсатор, при этом вал генератора отсоединяется от вала турбокомпрессорной группы вручную у газотурбинной установки без регенератора и автоматически при полной скорости вращения вала у установки с регенератором. У выпускного патрубка компрессора располагается масляная цистерна, на которой монтируется вспомогательный редуктор, пусковой двигатель и вспомогательные масляные насосы с приводом от двигателя постоянного и переменного тока. Маслоохладители расположены в масляной цистерне. Топливные насосы и компрессоры дополнительного сжатия воздуха для распыления топлива имеют привод от вспомогательного редуктора и монтируются на нем. Каждая установка монтируется на отдельном фундаменте, который не связан со зданием станции.  [c.141]

Электрические генераторы этих установок используются также как синхронные компенсаторы.  [c.181]

Электрические машины переменного тока разделяются на два класса синхронные машины, которые преимущественно применяются как генераторы переменного тока, и асии.хронные машины, используемые в основном в качестве двигателей переменного тока.  [c.313]

Источник электрической энергии — синхронный генератор трехфазного переменного тока Двигатель-генераторная группа для питания грузоподъемного магнита  [c.58]

Геликоптеры (вертолеты) 26S, 275 Гелиотроп зеркальный 396 Генераторы электрические магнитоэлектрические 52 синхронные 80, 81 с самовозбуждением 52 Генетика 447 Гидроаэродинамика 289 Гидродинамика 283 Гидроинтеграторы Петровича 393 Гидрометаллургия 129 Гидросамолет 289, 428, 429 Гидроэлектростанции 59, 82—84 Головка решуще-отбойная 91, 92 Горизонт  [c.500]

Генераторы электрические, паротурбинные двухполюсные, предназначенные для непосредственного соединения с паровыми турбинами, изготовляются в соответствии с ГОСТ 533-68. Стандарт распространяется на стационарные трехфазные синхронные генераторы мощностью от 2 500 квт и выше, с частотой 50 гц при частоте вращения ротора 3 000 об1мин.  [c.65]

Принципиальная электрическая схема крана приведена на рис. П-13, где приняты следующие обозначения. MB — механический выпрямитель генератора Г — синхронный генератор ЕС-92-6С СУ — стабилизирующее устройство П — пакетный переключатель ПК-3-60-Н/2 2РП, ЗРП —реле ЭП-41/30Б ЛВ —автомат А-3124 Привод механизмов подъемных лебедок. М —элек  [c.49]

Схема балансировочного станка более совершенного типа показана на рис. 310,6. Опоры 1 балансируемой детали 3 опираются на плоские пружины 2. Колебания опор передаются тягами 4 электрическим устройствам 5, в которых возникает ток. Напряжение этого тока пропорционально амплитудам колебаний опор. Ток от этих электрических устройств после усиления подводится к одной из обмоток ваттметра 6. По показанию ваттметра 6 судят о величине амплитуды, а следовательно, и овеличинедис-баланса. Другая обмотка ваттметра 6 получает ток от генератора 7 переменного тока, ротор которого вращается синхронно с балансируемой деталью и представляет собой двухполюсный магнит. Градуированный статор генератора можно поворачивать при помощи рукоятки 8 или специального маховичка во время вращен я детали. Положение дисбаланса детали определяется по углу поворота обмотки статора, определяемому по лимбу поворачиваемой рукояткой или маховичком при максимальном отклонении стрелки ваттметра. Современные балансировочные станки высокопроизводительны и позволяют балансировать до 60—80 деталей в час.  [c.513]

С учетом современных методов построения ППП разработан и получил широкое применение при проектировании ЭМП ряд пакетов как объектно-независимых, так и объектно-ориентированных [65]. Объектно-ориентированные ППП предназначены для решения проектных задач сравнительно узкого класса ЭМП и применяются соответственно в САПР синхронных двигателей, крупных электрических машин, трансформаторов, синхронных генераторов автономной электроэнергетики и т. п. Объектно-независимые ППП предназначены в основном для решения задач оптимизации параметров и анализа динамических режимов практически любых ЭМП. К их числу можно отнести пакет для многокритериального оптимального проектирования ЭМП в диалоговом режиме (ППП МОПО) [65] и пакет для моделирования динамических процессов электромеханических систем ( 7.4).  [c.155]

При высоких энергиях циклотронная частота зависит от скорсстн ускоряемой частицы. Для поддержания синхронности периодического движения частицы и ускоряющего переменного электрического поля перед конструктором ставится требование, чтобы налагаемая высокая частота или индукция магнитного поля (или то и другое одновременно) изменялись, следуя за процессом ускорения. Показать, что частота генератора (в должна быть пропорциональна отношению В/ , где В — индукция магнитного поля и — полная энергия частицы. (Следует воспользоваться формулой (26).)  [c.409]


Наряду с поставками для нужд электроэнергетики генераторов для паровых, газовых и гидравлических турбин, предприятиями электротехнической промышленности осуществлялась комплектация таких механизмов, как насосы, вентиляторы, дымососы, дизель-генераторы, крупными электрическими машинами, конструкции которых с учетом новейших требований разработаны в текущей пятилетке (синхронные генераторы СБГД-6300, электродвигатели серий ВАЗ, АБЦ и Др.).  [c.262]

Полное решение задачи вибродиагностики может быть обеспечено лишь при наличии совершенных средств возбуждения, измерения и обработки информации. Выявлены типичные элементы, которые должны составлять основу модулей вибродиагностиче-ских комплексов. Стенд с автоматической контрольно-испытательной аппаратурой, на котором реализуется диагностика ПРС по изотропности жесткостных и диссипативных характеристик, включает в себя испытуемый объект с применением прецизионных приспособлений. Последний присоединяется к двум электродинамическим возбудителям, предварительно идентифицированным по механическим и электрическим параметрам. Колебания объекта возбуждаются от сканирующего генератора посредством блока управления. Механические колебания регистрируются виброприемниками обратной связи, которая замыкается посредством предварительных усилителей. В состав блока управления входит система синхронных следящих фильтров, реализующая быстрое аналоговое преобразование Фурье.  [c.139]

Если ножницы стоят непосредственно за последней клетью непрерывного стана, то часто пользуются чисто электрической синхронизацией числа оборотов ножниц и стана. Исчерпывающее решение вопроса электрической синхронизации скорости ножниц в части точности отрезаемых кусков обеспечивается установкой в качестве привода ножниц синхронного двигателя, питающегося от синхронного генератора, соединённого с двигателе.м последней рабочей клети непрерывного стана. Длина отрезаемых кусков в этом случае также определяется уравнением (82). Большого распространения, однако, эта схема не получила, так как для регулировки длины отрезаемых кусков она требует наличия гидравлической коробки скоростей или сложного диференциаль-ного редуктора.  [c.974]

Положение кардинально изменилось лишь тогда, когда в качестве первичных двигателей стали применять быстроходные паровые турбины и на их основе возник совершенно новый тип синхронных генераторов. В 1884 г. Ч. Парсонс изобрел реактивную паровую турбину, предназначенную специально для электростанции. Для того чтобы этот быстроходный двигатель насадить без промежуточного редуктора на один вал с электрическим генератором, имевшим значительно меньшую оптимальную скорость, Парсонс разработал многоступенчатую турбину. Дальнейшее совершенствование турбины Парсонса шло неразрывно с развитием генераторов возник единый агрегат — турбогенератор [2, с. 60—62]. Некоторое время создавались турбогенераторы постоянного тока, предельная мощность которых достигла 2000 кВт при 1500 об/мин. Постепенно они были вытеснены турбогенераторами, вырабатывавшими переменный ток. Большие скорости вращения сказались на конструктивном выполнении обмоток генераторов первоначально роторы строили с явно выраженными полюсами, но возросшая механическая нагрузка и большие потери на трение о воздух заставили перейти к распределенной обмотке возбуждения. Уже в 90-х годах турбина Парсонса получила широкое распространение в Англии, а ее применение на Европейском континенте несколько задержалось, несмотря на то что в 1895 г. фирма Westinghous , а годом позже фирма Brown, Boveri С° прибрели право на строительство турбин Парсонса [36, с. 62]. Перелом произошел в 1899 г., когда Парсонс выполнил заказ на две крупные по тому времени турбины для приво-  [c.81]

В случае отсутствия системы АПЧ в измерительном устройстве, имеющем избирательный усилитель, например, с добротностью Q = 30, такое изменение частоты вращения вызвало бы фазовую погрешность порядка 51°. С помощью импульсно-фазовой автоподстройки частоты (ИФАПЧ) возможно также осуществить электрическое эталонирование, что крайне необходимо при индивидуальном и мелкосерийном производстве балансируемых турбомашин. В этом случае система ИФ.АПЧ служит в качестве генератора синусоидального сигнала, синхронного и синфазного с опорным, механически не связанного с высокоскоростным ротором.  [c.48]

Когда газотурбинная установка не работает, электрический генератор используется как синхронный компенсатор. Это обусловлено наличие специальной муфты и перепускного клапана за турбиной высокого давления. При пуске установки во время работы электрического генератора синхронным компенсатором перепускной клапан открывается полностью и турбокомпрессорная группа пускается на холостой ход, перепускной клапан постепенно закрывается, пока вал силовой турбины не будет вращаться с синхронной скоростью. В этот момент муфта входит в зацепление и установка начинает отдавать энергию в сеть. Скорость вращения вала турбокомпрессорной группы устанавливается автоматически в зависимости от нагрузки. Весь пуск установки осуществляется за 8 минут. Пуск турбокомпрессорной группы осуществляетсятрех-фазным электродвигателем.  [c.187]

Фирма Крезо совместно с фирмой Турбомека выпустила газотурбинную установку мощностью 6000 кет для покрытия пиков электрической нагрузки. Ожидается, что эта установка будет работать не более 300 часов в год. В остальное время года электрический генератор будет использоваться в качестве синхронного компенсатора.  [c.187]

Прежде синхронная связь между валами турбины и маятника осуществлялась ременным приводом, имеющим ряд недостатков биение, опасности спадания и разрыва. Теперь все чаще осуществляется привод электрический, для чего маятник сажается на вал синхронного или асинхронного электродвигателя. Двйгатель питается или от шин главного генератора, или от специального генератора, посаженного на вал турбины. Маятник берет на себя до 0,3 кет, но асинхронный двигатель берется В 1- 1,5 кет, чтобы он не имел скольжения.  [c.191]

Рис. 3.19. Схема экспериментальной установки для переключения с помощью импульсов лазера на красителе с синхронной накачкой (по [3.29]), см. гл. 6. 1 — ВЧ-генератор 2 — акустооптический синхронизатор мод 3 — Кг+-лазер 4 —лазер на красителе 5 — стробирующая головка 5 —фотодиод 7 —оптоэлектронный ключ 8 — блок питания 9 — стробоскопический осциллограф. К волноводной структуре прикладывалось постоянное напряжение порядка 100 В. Индуцированный в щели электрический сигнал подавался с помощью короткого коаксиального кабеля на вход В стробоскопической головки (HP 1430 С) с временем нарастания 20 пс. Для управления стробоскопической головкой на его вход А поступал сигцал с лавинного фотодиода, возникавший под действием ответвленной части излучения лазера накачки (криптоновый лазер), также работавшего в режиме синхронизации мод с частотой следования импульсов 76 МГц. Импульсы излучения лазера на красителе (пиковая мощность 100—500 Вт, длительность — 5—10 пс, частота следования 76 МГц) фокусировались линзой (/=40 мм) на активную поверхность детектора (0,45x0,03 мм ). В этом устройстве оптоэлектронный ключ может быть использован и как быстродействующий фотоприемник. Его чувствительность имеет порядок 1 мВ на 1 мВт средней мощности излучения лазера. Рис. 3.19. Схема <a href="/info/127210">экспериментальной установки</a> для переключения с помощью импульсов лазера на красителе с синхронной накачкой (по [3.29]), см. гл. 6. 1 — ВЧ-генератор 2 — акустооптический синхронизатор мод 3 — Кг+-лазер 4 —лазер на красителе 5 — стробирующая головка 5 —фотодиод 7 —оптоэлектронный ключ 8 — <a href="/info/294957">блок питания</a> 9 — <a href="/info/384084">стробоскопический осциллограф</a>. К волноводной структуре прикладывалось <a href="/info/401526">постоянное напряжение</a> порядка 100 В. Индуцированный в щели <a href="/info/333019">электрический сигнал</a> подавался с помощью короткого <a href="/info/320388">коаксиального кабеля</a> на вход В стробоскопической головки (HP 1430 С) с временем нарастания 20 пс. Для управления стробоскопической головкой на его вход А поступал сигцал с <a href="/info/376793">лавинного фотодиода</a>, возникавший под действием ответвленной части <a href="/info/10143">излучения лазера</a> накачки (<a href="/info/179120">криптоновый лазер</a>), также работавшего в режиме синхронизации мод с <a href="/info/422672">частотой следования импульсов</a> 76 МГц. Импульсы <a href="/info/10143">излучения лазера</a> на красителе (пиковая мощность 100—500 Вт, длительность — 5—10 пс, частота следования 76 МГц) <a href="/info/408934">фокусировались линзой</a> (/=40 мм) на активную поверхность детектора (0,45x0,03 мм ). В этом устройстве оптоэлектронный ключ может быть использован и как <a href="/info/376551">быстродействующий фотоприемник</a>. Его чувствительность имеет порядок 1 мВ на 1 мВт <a href="/info/402165">средней мощности излучения</a> лазера.

Электрическая силовая передача состоит из генератора, который преобразует механическую энергию в электрическую, питающую электродвигатель (электродвигатель может получать питание и непосредственно от внешней сети), различных устройств для передачи электроэнергии от генератора или внешней сети электродвигателям (силовые шкафы, токосъемники, кабели и провода, соединительная арматура) и электродвигателя, преобразующего электрическую энергию в механическую, которая приводит в действие тот или иной исполнительный механизм крана. Электрические силовые передачи автомобильных кранов переменного тока напряжением 380 В. Предусмотрена возможность питания двигателей от внешней электрической сети общего назначения. На автомобильных кранах применяют два типа электрических машин переменного тока асинхронные двигатели и синхронные генераторы.  [c.23]

Электрический привод (электропривод) автомобильных кранов переменного тока напряжением 380 В. В качестве источника электроэнергии для питания электродвигателей механизмов крана применяют синхронные генераторы одной серии ЕСС5 напряжением 400 В.  [c.63]

Кинематическая схема (рис. 26) отличается от обычной схемы наличием лебедки VIII для подтягивания груза. Привод крана индивидуальный электрический от синхронного генератора трехфазного тока ЕСС5-83-6М-101 мощностью 37,5 кВт, напряжением 400 В, номинальной частотой вращения 1000 об/мин с полупроводниковым или механическим выпрямителем и стабилизирующим устройством. Генератор IV вращается от двигателя базового автомобиля через коробку передач карданную передачу, специальный механизм привода III и клиноременную передачу II.  [c.42]


Смотреть страницы где упоминается термин Генераторы электрические синхронные : [c.595]    [c.33]    [c.39]    [c.425]    [c.182]    [c.138]    [c.189]    [c.51]    [c.69]    [c.21]    [c.90]    [c.111]    [c.200]    [c.54]   
Техника в ее историческом развитии (1982) -- [ c.80 , c.81 ]



ПОИСК



Генератор синхронный

Генераторы электрические



© 2025 Mash-xxl.info Реклама на сайте