Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка композиционных сплавов

СВАРКА КОМПОЗИЦИОННЫХ СПЛАВОВ  [c.166]

Сварка композиционных сплавов 166 - Классификация по межфазному взаимодействию 166  [c.474]

Качество сварных соединений естественных КМ, или композиционных сплавов, определяется в первую очередь возможностью сохранения структуры и механических или специальных свойств в зоне сварки. Исходя из этого необходимо проанализировать возможные варианты трансформации структуры изготовленных специальными методами композиционных сплавов в условиях сварки, воспользовавшись классификацией по межфазному взаимодействию составляющих сплавы компонентов при плавлении и кристаллизации.  [c.166]


Таким образом, все металлические композиционные сплавы можно разбить на удобные и неудобные для использования в конструкциях, где целесообразна сварка плавлением. Наиболее удобными можно считать КМ, относящиеся ко второму и частично к первому классам рассмотренной классификации. Неудобными являются КМ третьего и четвертого классов. Эти КМ при сварке резко меняют фазовый состав и морфологию, что не обеспечивает нужного качества соединений.  [c.166]

Оптимальные режимы сварки стыковых соединений композиционного сплава АБМ-1 (композиция А1 - 30 % Ве - 5 % Mg) при толщине материала 0,8...3 мм находятся в диапазоне скоростей сварки 2,2... 10 мм/с. Если скорость сварки <2,2 мм/с, наблюдается неудовлетворительное формирование шва, а при скорости сварки >10 мм/с в сварных швах образ тот-ся продольный трещины.  [c.166]

Технология электронно-лучевой сварки (ЭЛС). Сварка концентрированными источниками энергии, такими как электронный и лазерный лучи, наиболее рациональна при соединении металлических композиционных сплавов, упрочненных частицами.  [c.168]

Материалы, обсуждаемые в этой главе, как правило, представляют собой смесь двух или более компонентов большинство из них получают методами порошковой металлургии. Некоторые из них изготовляют методом внутреннего окисления, при котором один из металлов сп.лава превращается в окисел. При этом получаемые композиции обладают особыми электрическими, механическими, фрикционными и технологическими свойствами, превосходящими свойства традиционных металлов и сплавов. Эти композиционные материалы находят применение в электрических контактах, в постоянных магнитах, при сварке сопротивлением, в электрических разрядниках, в электрохимических установках и электрических щетках.  [c.416]

Наряду с превосходным сопротивлением деформации композиционные материалы обладают и еще одним полезным свойством — поддерживать необходимый при сварке тепловой баланс. В сварочных процессах, упомянутых выше, используют электроды из вольфрама или карбида вольфрама, пропитанных медью или медными сплавами. Термообработкой можно повысить прочность и твердость таких материалов.  [c.437]

Как было отмечено выше, при изготовлении композиционных материалов методом диффузионной сварки под давлением матрица применяется чаще всего в виде фольги. Поверхность фольги из металлов и сплавов может быть загрязнена различными смазками, применяемыми в процессе ее изготовления, может быть 120  [c.120]


Динамическое горячее прессование. Этот процесс, относящийся к категории импульсных методов формирования и называемый за рубежом процессом формования с применением высоких скоростей и энергий, применялся первоначально для прецизионной ковки металлических слитков в изделия сложной формы. Изготовление композиционных материалов этим методом заключается в диффузионной сварке пакета предварительной заготовки, нагретого до необходимой температуры, в результате кратковременного приложения очень больших давлений. Динамическое горячее прессование предварительных заготовок может осуществляться на ковочных молотах и подобных им установках в специальных пресс-формах или в вакуумированных пакетах. Одна из таких установок, применявшаяся для изготовления композиционного материала на основе титанового сплава Ti—6% А —4%V, упрочненного волокном карбида кремния, описана в работе [223]. Эта пневмомеханическая установка динамического прессования, внешне похожая на молот, имеет значительно более высокий уровень энергии падающих частей. Пуансон в ней прикреплен к раме массой 1 т. Рама, выстреливаемая давлением газа, толкает пуансон в закрытую матрицу. Скорость падения пуансона составляет 132  [c.132]

Алюминий — борное волокно. Как уже было указано выше, основными технологическими параметрами, влияющими на свойства композиционных материалов, полученных методом диффузионной сварки под давлением, являются температура, давление и время выдержки. Одной из первых и наиболее подробных работ, посвященных исследованию влияния различного сочетания этих факторов и выбора оптимальных сочетаний, является работа 130]. Были опробованы режимы прессования 1) при низкой температуре, высоком давлении и длительной выдержке 2) при умеренной температуре, низком давлении и умеренной выдержке 3) при высокой температуре, высоком давлении и кратковременной выдержке. Исследования проводили на композиционных материалах с матрицами из трех алюминиевых сплавов — 6061 (0,4—0,8% Si 0,7% Fe 0,15—0,4% Си 0,25% Zn, 0,15% Мп 0,8—1,2% Mg 0,15%Ti 0,15—0,35% r), 2024 (0,5% Si 0,5% Fe 3,8—4,9% u 0,25% Zn 0,3—0,9% Mn 1,2—1,8% Mg 0,1% r) и 1145 [S5 99,45% Al 0,55% (Si + Fe) 0,05% u 0,05% Mn]. Свойства полученных по этим режимам образцов приведены в табл. 25.  [c.133]

Данные приведенные в табл. 27, получены на волокне борсик диаметром О, 07 мм. При увеличении диаметра волокна прочность композиционного материала в поперечном направлении значительно возрастает. Так, например, в работе [109] указано, что композиционные материалы, полученные методом намотки волокна борсик с диаметром 0,145 мм на алюминиевую фольгу толщиной 0,025 мм с шагом 0,182 мм и последующего нанесения плазменным методом сплавов 6061 или 2024 после сборки в пакет и диффузионной сварки в вакууме по режиму температура 490— 565° С, давление 400 кгс/мм , время выдержки 1 ч, имели прочность в поперечном направлении 28 кгс/мм .  [c.135]

Композиционный материал на основе алюминиевого сплава 6061 с 47 об. % волокна борсик и 6 об. % проволоки из коррозионно-стойкой стали AF -77, уложенной перпендикулярно борному волокну получали методом диффузионной сварки под давлением в вакууме при температуре 500° С, давлении 700 кгс/см в течение 1 ч [109] предел прочности такого материала в поперечном направлении был равен 29 кгс/мм . Аналогичный материал на основе сплава 6061 с 50 сб.% волокна борсик и 5 об. % проволоки из коррозионно-стойкой стали 355 диаметром 0,05 мм, также уложенной в поперечном направлении, получали 1177] методом диффузионной сварки в автоклаве. При этом применяли следующий режим пагрев до температуры 482°С при давлении 3,5 кгс/см" и выдержку в этих условиях 30—50 мни, повышение давления до 210 кгс/см , затем повышение температуры до 524—530° С, отключение нагрева и охлаждение материала в автоклаве до 200° С. Предел прочности такого материала в направлении укладки борного волокна был равен 120 кгс/мм , а в поперечном направле-138  [c.138]

Композиционные материалы с матрицей из титанового сплава 4911 (Ti—6%А1—4% V) и алюминиевого сплава 6061 и упроч-нителем из волокна борсик получали методом диффузионной сварки 140  [c.140]


Однако уже к настоящему времени имеется определенный опыт в изготовлении элементов конструкций как из самих композиционных материалов, так и в сочетании их с алюминиевыми, титановыми сплавами, с использованием методов гибки, подсечки, резки, сверления, а также различных методов соединения пайки, точечной сварки, диффузионной сварки и др.  [c.190]

Боралюминий — А1 6061-Т6. При сварке таких разнородных материалов большое значение имеет выбор электродов. В данном случае со стороны композиционного материала применяли электрод 1 класса с высокой проводимостью, с плоским торцом, а со стороны алюминиевого сплава — электрод III класса с низкой проводимостью, с радиусом закругления 100 мм. Такая комбинация позволяла сбалансировать разницу в электропроводности материала и вывести ядро сварной точки в плоскость между листами.  [c.194]

Показана возможность соединения композиционных материалов между собой и с алюминиевым сплавом 2219 (А1—6% Си— 0,3% Мп—0,2% Zr—0,1% V) методом точечной сварки сопротивлением. При этом наблюдались выплеск металла, продавливание композиционного материала, смещение и уплотнение волокон. Но при более тщательной отработке режимов сварки, при использовании между свариваемыми поверхностями фольги, например из сплава 718, этот метод может оказаться вполне пригодным.  [c.197]

Метод диффузионной сварки сводится к следующему. Слои алюминиевого сплава в виде фольги и уложенные на нее в виде пакета волокна бора подвергают давлению в подогреваемой пресс-форме. Меняя толщину фольги и шаг укладки волокон, можно в широких пределах влиять на физико-механические свойства композиционного материала.  [c.127]

Сварочная техника и технология занимают одно из ведущих мест в современном производстве. Свариваются корпуса гигантских супер танкеров и сетчатка человеческого глаза, миниатюрные детали полупроводниковых приборов и кости человека при хирургических операциях. Многие конструкции современных машин и сооружений, например космические ракеты, подводные лодки, газо- и нефтепроводы, изготовить без помощи сварки невозможно. Развитие техники предъявляет все новые требования к способам производства и, в частности, к технологии сварки. Сегодня сваривают материалы, которые еще относительно недавно считались экзотическими. Это титановые, ниобиевые и бериллиевые сплавы, молибден, вольфрам, композиционные высокопрочные материалы, керамика, а также всевозможные сочетания разнородных материалов. Свариваются детали электроники толщиной в несколько микрон и детали тяжелого оборудования толщиной в несколько метров. Постоянно усложняются условия, в которых выполняются сварочные работы сваривать приходится под водой, при высоких температурах, в глубоком вакууме, при повышенной радиации, в невесомости. Недаром сварка стала вторым после сборки технологическим процессом, впервые в мире опробованным нашими космонавтами в космосе.  [c.3]

Композиционные материалы ВДУ-1 и ВДУ-2 пластичны, и полуфабрикаты этих сплавов деформируются в широком интервале температур различными методами (ковка, штамповка, осадка, глубокая вытяжка и др.). Для соединения деталей из сплавов типа ВДУ применяют высокотемпературную пайку либо диффузионную сварку, с тем чтобы избежать расплавления. В зоне расплавления происходит агломерация частиц упрочняющей фазы и, как следствие, потеря сплавами жаропрочности.  [c.257]

Композиционные материалы ВДУ-1 и ВДУ-2 пластичны, и полуфабрикаты этих сплавов деформируются в широком интервале температур различными методами (ковка, штамповка, осадка, глубокая вытяжка и др.). Для соединения деталей из сплавов типа ВДУ применяют высокотемпературную пайку либо диффузионную сварку, с тем чтобы избежать расплавления. Сплавы ВДУ-2,  [c.297]

Наиболее широкое распространение получило армирование жаропрочных никелевых сплавов вольфрамовой проволокой. Композиционный материал в этом случае получают способами пластического деформирования прокаткой, сваркой, взрывом.  [c.309]

Большинство баллонов изготовляют сваркой из штампованных элементов, так что при расчете надо учитывать ослабляющее влияние сварного шва. Материалы, применяемые для емкостей, должны иметь высокую удельную прочность на растяжение. Этим требованиям удовлетворяют высокопрочные стали и титановые сплавы. Недавно баллоны высокого давления стали изготовлять также из композиционных материалов.  [c.351]

Никель является основой большинства суперсплавов, разработанных для деталей газовых турбин, поэтому именно он и используется наиболее часто в качестве матрицы в разрабатываемых композициях высокотемпературного назначения. В большинстве работ, описываемых в этой главе, в качестве матриц применяли чистый никель или простые нихромовые сплавы. Легирующие добавки в сложных суперсплавах могут вызывать интенсивное взаимодействие на поверхности раздела волокно — матрица они также повышают твердость матрицы, что затрудняет изгото-вление композиций с помощью диффузионной сварки. Вместе с тем в композиционных материалах большинство добавок не является необходимым и не требуется для достижения прочности, так как в этих материалах основную приложенную нагрузку воспринимают упрочняющие волокна. Следовательно, свойства матрицы композиционного материала должны быть оптимизированы так, чтобы она обеспечивала защиту упрочнителя, обладала пластичностью и вязкостью, сопротивлялась окислению вклад же ее в прочность системы может быть незначительным.  [c.167]

Сложной является проблема сварки композиционных материалов системы алюминий - бор между собой и с алюминиевыми сплавами типа Д16Т 1420. Объемное содержание нитей бора в этих материалах 30. .. 55 %, толщина 0,8. .. 2,0 мм, условный плакирующий слой 50. .. 200 мкм. Подготовку поверхности под сварку производят только химическим путем, включая операции травления, осветления и пассивирования. Наилучшие результаты достигаются при сварке вращающимся вольфрамовым электродом, на переменном токе в смеси аргона и гелия (20 80) при использовании технологических проставок из алюминиевых сплавов типа АМг, 1420, 1201.  [c.550]


Контактная точечная электросварка Отличное Требуется контроль соединений по выплескам и раздавливанию. Сварка композиционного материала с алюкшниевыми сплавами затруднена  [c.391]

Технология аргонодуговой сварки. Аргонодуговой сваркой могз г быть сварены практически все КМ, входящие в вышеперечисленные группы естественных металлических композиционных сплавов. Однако при этом следует учитывать возможность образования двух видов дефектов образования химической и структурной неоднородности в шве и ОШЗ расслоения компонентов в шве.  [c.166]

Верхняя обшивка. Выбран композиционный материал бор — алюминий (В—А1) ввиду высоких показателей прочности при сжатии и удельного модуля сдвига, особенно при температурах 150—200° С. Материал получен диффузионной сваркой монослоев, содерН ащих борные волокна диаметром 140 мкм (47% по объему) в матрице из алюминиевого сплава 6061 и приварен к титановым закоицовкам корня (комля) для передачи нагрузок. Обшивка представляет собой трехслойную конструкцию с листами из бор-алюминия и алюминиевым заполнителем. Внутренняя поверхность выполнена плоской с тем, чтобы упростить проблему крепления. Принятая ориентация волокон 0 45 - с добавлением слоев, ориептгт-рованных под углом 90°, для локального усиления болтовых соединений при наложении действующих по хорде усилий от закрылков и предкрылков. Для крепления листов внешней облицовки к титану необходимы трехступенчатые соединения (см. рис. 13). Вследствие меньших действующих нагрузок для крепления внутренних листов требуется только двухступенчатое соединение. Нагрузка в соединениях по внешней поверхности составляет 3567 кгс/см. Для расчета отверстий болтовых соединений был использован зкспериментальпо определенный коэффициент концентрации напряжений. Отверстие для отбора проб топлива диаметром 76 мм усилено дополнительными слоями, ориентированными в направлениях 0 и 45°.  [c.151]

Высокопрочные композиционные материалы с низким электросопротивлением, например хром-медь, находят разнообразное применение в аппаратуре для сварки сопротивлением. Э.лектроды могут быть сделаны либо целиком из композиционного материала, либо из него изготовляется только наружняя часть. В обоих случаях достигается большая долговечность, чем при использовании медных сплавов.  [c.437]

Низкие прочностные свойства окалиностойкого сплава Х20Н78Т [1] можно увеличить, например, путем создания композиции с более жаропрочным материалом в середине. На рис. 2 приведены микрофотографии поверхности трехслойных образцов состава Х20Н78Т + ВМ-1 + Х20Н78Т после растяжения их при 1000°С. Образцы после сварки имели характерную волнообразную границу раздела слоев. Приграничные участки явились очагами зарождения микротрещин уже на начальной стадии деформации при удлинении 2—3%. Процесс разрушения такого композиционного материала начинался с разрушения относительно малопластичного при этих температурах молибденового сплава в дефектных местах и зонах расположения хрупких фаз на границе раздела, что типично для соединений, полученных сваркой взрывом.  [c.96]

В ряде случаев существенное влияние на структуру и свойства оказывает термическая обработка композиционного материала, например в боралюминиевой композиции, при использовании в качестве матрицы алюминиевых сплавов, предел прочности при растяжении в направлении поперек укладки волокон может быть увеличен в 2—3 раза за счет применения термической обработки. Прочность связи между компонентами и сдвиговые характеристики материалов, полученных сваркой взрывом или экструзией, могут быть улучшены в результате правильно выбранного режима отжига. Кроме того, термическая обработка может изменить структуру вследствие образования промежуточных фаз, положительное или отрицательное влияние которых на структуру и свойства следует учитывать.  [c.9]

Прессование. Основной операцией процесса изготовления композиционных материалов методом диффузионной сварки под давлением является прессование. Именно в процессе этой операции происходит соединение отдельных элементов предварительных заготовок в компактный материал (формирование изделий). В отличие от прессования как метода обработки давлением металлов и сплавов, заключающегося в выдавливании металла из замкнутой полости через отверстие в матрице и связанного с большими степенями деформации обрабатываемого материала, данный процесс по своему существу ближе к процессу прессования порошковых материалов, применяемому в порошковой металлургии. Прессование заготовок композиционных материалов в большинстве случаев осуществляется в замкнутом объеме (в пресс-формах, состоящих из матрицы и двух пуансов типа пресс-форм, применяемых для получения изделий из металлических порошков) и с незначительной пластической деформацией материала матрицы, необходимой только для заполнения пространства между волокнами упрочнителя и максимального уплотнения самой матрицы. При этом, как и в процессе горячего прессования порошков, наряду с пластической деформацией матрицы, на границе раздела 126  [c.126]

Композиционные материалы из титанового сплава Ti—6% А1— 4% V получили методом диффузионной сварки [101, 218]. Сварку проводили в вакууме при температуре 900° С, давлении 850 кгс/мм в течение 30 мин [101]. При использовании для закрепления волокна связующего, например, на основе полистирола необходимы предварительный нагрев и выдержка при температурах 370—430° С [101]. Для улучшения качества сварки между слоями титанового сплава Ti—6% А1—4% V используют промежуточный слой из гидрида титана TiHj, позволяющего снизить температуру сварки до 760° С.  [c.140]

Титан и титановые сплавы находят применение в качестве второй составляющей матрицы в композиционных материалах алюминий — борное волокно. В этих материалах титан, добавленный в виде слоев фольги в алюминиевую матрицу, значительно повышает прочность в поперечном направлении и сдвиговые характеристики боралюминиевого материала. При этом слои титана вводят таким образом, чтобы они были изолированы от борного волокна слоями алюминия. Это позволяет снизить температуру диффузионной сварки и предохранить борные волокна от взаимодействия с титаном, а значит и от разупрочнения.  [c.140]

Титан — волокна окиси алюминия. Получение композиционного материала на основе титановой матрицы, упрочненной волокнами из окиси алюминия, описано в работе [215]. В качестве матрицы в этом материале применяли фольгу титанового сплава Ti—6% А1—4% V толщиной 0,20—0,25 мм, а унрочнителем служило волокно из окиси алюминия диаметром 0,25—0,27 мм со средней прочностью 210 кгс/мм . Материал получали методом диффузионной сварки под давлением в вакууме 1 10 мм рт. ст. по следующему режиму температура 815° С, давление 980 кгс/см , время выдержки 15 мин. Полученный по этому режиму материал имел предел прочности в направлении, параллельном укладке волокна, 70—88 кгс/мм , в поперечном направлении — 40 кгс/мм . Модуль его упругости в соответствующих направлениях был равен 14 800—19 ООО и 12 ООО кгс/мм .  [c.141]

В качестве взрывчатых веществ обычно используют тротил, аммониты, гексоген, а также смеси и сплавы этих веществ. Качественные соединения при сварке взрывом листовых слоистых и слоисто-волокнистых композиционных материалов получаются при использовании малобризантных, порошкообразных взрывчатых веществ, например смеси тротила с аммиачной селитрой.  [c.161]


В качестве примера рационального использования различных методов соединения боралюминия в конструкциях приведены крышка люка самолета F-106 и силовой шпангоут самолета F-111. Крышка люка размером 289x280 мм с радиусом кривизны 1090 мм выполнена клееной. Шпангоут размером 762 х 1220 мм изготовлен из титана и композиционного материала на основе алюминиевого сплава 6061-Т6 и волокон борсик. Для соединения элементов применяли точечную сварку, склейку и механический крепеж. Во время прочностных испытаний образцов разрушение произошло при нагрузках, составляющих 160 и 130% предельной расчетной для крышки и шпангоута соответственно.  [c.198]

Композиционные материалы (КМ). Самым распространенным композитным материалом является железобетон, широко используемый в строительстве. В нем металлические стержни являются армирующими наполнителями, а бетон связующим компонентом - матрицей. В машиностроении используются композиционные материалы, в которых связующими компонентами являются металлы (МКМ), керамика (ККМ), полимеры (ПКМ). В данном разделе рассмотрены вопросы сварки МКМ. В качестве наполнителей в металлических композитах используют сплавы алюминия, магния, меди, никеля, тит)ана и т.д. В качестве армирующих материалов - высокопрочные материалы углеродные, борные, карбидокремниевые волокна, нитевидные кристаллы, металлическую проволоку. Армирующие материалы в композитах находятся в виде частиц различной дисперсности (дисперсионно-упрочненные ДУКМ), волокон длинной или короткой резки или слоев (рис. 15.1).  [c.547]

При сварке алюминиевых композиционных материалов, армированных борными и стальными волокнами, возникают две проблемы. Первая -это трудность образования сварного соединения без повреждения волокон и снижения их прочности при расплавлении алюминиевой матрицы. Прямое воздействие источника нагрева (дуги, луча при ЭЛС) приводит к разрушению и плавлению волокон. Второе - это то, что наличие волокон изменяет перемещение теплоты в сварочной ванне и затрудняет перемещение в ней расплавленного металла. Основными дефектами швов являются пористость, несплавление, повреждение волокон. Устранению дефектов при аргонодуговой и электронно-лучевой срарке способствует применение импульсных режимов и использование тавровых и двутавровых проставок из матричного алюминиевого сплава между свариваемыми кромками. Этим способом можно изготовлять элементы конструкций типа балок, труб и т.п.  [c.550]

Дисперсно-упрочненные композиционные материалы. Среди дисперсно-упрочненных материалов ведущее место занимает САП (спеченная алюминиевая пудра), представляющий собой алюминий, упрочненный дисперсными частицами оксида алюминия. Получают САП из окисленной с поверхности алюминиевой пудры, частицы которой имеют форму чешуек толщиной менее 1 мкм, путем последовательного брикетирования, спекания и прессования. Структура САП состоит из алюминиевой основы с равномерно распределенными дисперсными частицами Al Og. С увеличением содержания AI2O3 повышается прочность, твердость, жаропрочность САП, но снижается его пластичность. Марки САП-1, САП-2, САП-3, САП-4 содержат соответственно 6-8,9-12,13-17,18-22 %А1зОз. Высокая прочность САП объясняется большой дисперсностью упрочнителя и малым расстоянием между его частицами. По жаропрочности САП превосходит все алюминиевые сплавы. САП хорошо обрабатывается давлением в горячем, а САП-1 и холодном состоянии, легко обрабатывается резанием, сваривается контактной и аргонодуговой сваркой. Из САП производят листы, фольгу, трубы, различные профили, проволоку, штамповые заготовки. САП применяют в авиационной технике, химической и нефтехимической промышленности, электротехнике для деталей, работающих при температуре 300-500 С.  [c.262]

Стевепс и Хэнинк [30] выбрали материал Ti — 6% А1—4% V с 50 об. % борсика для разработки технологии производства вентиляторных лопастей. Композиционный материал изготовляли из предварительно намотанных матов из волокон борсика диаметром 4,2 мил (0,11 мм), покрытых смесью полистирола и порошка сплава Ti — 6% А1—4% V. Перед укладкой с матами фольгу из титанового сплава толщиной 2,5 мил (0,06 мм) формовали, используя процесс ползучести, до необходимой конфигурации. Слоистую заготовку лопасти заключали в тонкую оболочку из коррозионно-стойкой стали, сконструированную таким образом, чтобы можно было поддерживать динамический вакуум в процессе диффузионной сварки горячим прессованием. Типичные технологические условия горячего прессования отвечали температуре 1600° F (871° С), выдержке 30 мин и давлению 12 ООО фунт/кв. дюйм (844 кгс/см ). Образцы, необходимые для характеристики материала, были приготовлены с соблюдением тех же технологических условий, которые применялись в производстве лопастей вентилятора. Свойства этих композиционных материалов представлены в табл. 7.  [c.317]

Однако процесс диффузионной сварки не может быть применен при изготовлении углеметаллических композиционных материалов, так как этот процесс не обеспечивает проникновения матричного металла в тонкие капилляры между отдельными волокнами. Теоретически проникновение матричного металла в 1 анилляры между моноволокнами без механического повреждения последних может быть осуществлено лишь при жидкофазной пронитке каркаса из армирующих волокон матричным расплавом, при электрохимическом или химическом осаждении матричного металла или сплава из газовой фазы (последний способ в настоящее время усиленно разрабатывается). Методы изготовления композиционных материалов применительно к конкретным системам металл — углеродное волокно будут подробнее рассмотрены в дальнейшем.  [c.357]

В работе [52] исследовали процесс получения углеалюминиевого композиционного материала, заключающийся в предварительном нанесении на углеродные волокна Торнел-50 электролитического никелевого покрытия, укладке покрытых волокон на фольгу из алюминиевого сплава 1100, закреплении их на фольге органическим клеем, выгорающим при последующих операциях, сборке многослойного пакета и диффузионном прессовании при 540° С. Образцы композиционного материала содержали около 8об.% армирующих волокон, что приблизительно равно критическому содержанию, а их прочность составила около 160 МН/м (16,3 кгс/мм ), т. е. была значительно выше прочности матричного алюминиевого сплава. В работе отмечается, что возмояшость использования подобного технологического процесса для получения композиций с более высоким содержанием армирующих волокон является сомнительной и, следовательно, отрицается перспективность метода диффузионной сварки для получения углеметаллических композиционных материалов.  [c.368]

Листы и пластины из комиозиционного материала с матрицей из чистого алюминия целесообразно соединять между собой с помощью модифицированного припоя, состав которого является промежуточным между составами сплавов 718 и 6061. Оптимальный состав припоя для соединения между собой листов из композиционного материала с матрицей из сплава А1 — 7% Zn не был подобран, но было установлено, что в состав припоя на основе алюминия должны входить магний и кремний. Жидкофазная сварка давлением в печи позволяет получить равномерное распределение волокон в зоне соединения, однако при осуществлении этого способа трудно обеспечить хорошее взаимное смачивание соединяемых деталей по всей поверхности контакта. Эксперименты продемонстрировали также возмогкность соединения листов из углеалюминия и стандартного сплава 2219 (А1 — 6% Си) между собой контактной точечной электросваркой основной трудностью при осуществлении этого процесса является локализация тепловыделения в композиционном материале. Возможна аргонодуговая сварка углеалюминия, однако в этом случае необходимо особенно четко контролировать условия сварки, так как наличие значительного перегрева может привести к интенсивному взаимодействию матрицы и армирующих волокон и к формированию в зоне сварки большого количества карбида алюминия, в результате чего может резко ухудшиться коррозионная стойкость сварного соединения.  [c.393]

Технологический процесс с применением плазменного напыления. Боралюминиевые ленты, полученные с использованием метода плазменного напыления, изготовляются так же, как и при вышеуказанном методе, однако вместо летучей связки на поверхность борного волокна, намотанного на алюминиевую фольгу, напыляется слой алюминиевого сплава, закрепляющего ленту и образующего после диффузионной сварки пакета, состоящего из чередующихся слоев напыленного полуфабриката и алюминиевой фольги, матрицу композиционного материала. Порошок алюминиевого сплава вводится в поток горячего плазмообразующего газа и плавится по экзотермической реакции. Расплавленные  [c.436]


Смотреть страницы где упоминается термин Сварка композиционных сплавов : [c.312]    [c.135]    [c.136]    [c.391]    [c.71]   
Смотреть главы в:

Сварка Резка Контроль Справочник Том2  -> Сварка композиционных сплавов



ПОИСК



Композиционные сплавы

Сварка композиционных сплавов 166 — Классификация по межфазному взаимодействию

ТЕХНОЛОГИЯ СВАРКИ ТУГОПЛАВКИХ МЕТАЛЛОВ И СПЛАВОВ И МЕТАЛЛИЧЕСКИХ КОМПОЗИЦИОННЫХ МАТЕРИАСвариваемость тугоплавких металлов и сплавов Шиганов)



© 2025 Mash-xxl.info Реклама на сайте