Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вакуум динамический

В настоящее время для получения армированных композиций широко применяют методы горячего прессования, прокатки, диффузионной сварки в вакууме, динамического горячего прессования и др. Представляется важным оценить влияние технологических факторов на прочность  [c.159]

При срыве вакуума динамические напряжения в рабочих лопатках возрастают в несколько раз, поэтому регулярные остановки с использованием срыва вакуума ведут к накоплению в них повреждений. Кроме того, при срыве вакуума происходит разогрев выходного патрубка и появляется возможность расцентровок и вибрации. Поэтому использование срыва вакуума допустимо лишь в аварийных ситуациях, действительно требующих этого.  [c.406]


При срыве вакуума плотность среды в ЦНД резко возрастает, и это приводит к быстрому замедлению частоты вращения ротора при прекращении подачи пара и отключении генератора от сети. При срыве вакуума динамические напряжения в рабочих лопатках возрастают в несколько раз, поэтому регулярные остановки с использованием срыва вакуума ведут к накоплению в них повреждений. Кроме того, при срыве вакуума происходит разогрев выходного патрубка и появляется возможность расцентровок и вибрации. Поэтому использование срыва вакуума допустимо лишь в аварийных ситуациях, действительно требующих этого.  [c.476]

В середине XIX в. были также накоплены сведения об электро динамической постоянной, фигурирующей при переходе от электрических к магнитным единицам. Она имеет размерность скорости и по значению очень близка к скорости света в вакууме. Наилучшие измерения, проведенные электромагнитными методами, приводили к значению (299 770 30) 10 см/с. Имеются данные, что столь хорошее совпадение этих констант, казавшееся в те времена случайным, стимулировало исследования Максвелла по созданию единой теории распространения электромагнитных волн. После появления этой фундаментальной теории уже не могло быть сомнений в том, что скорость света в вакууме и электродинамическая постоянная — это одна и та же константа, а совпадение результатов измерений ее значения, выполненных различными методами, является доказательством универсальности теории Максвелла, справедливой для любых электромагнитных волн. Ниже будет охарактеризован современный способ прецизионного определения скорости света в вакууме.  [c.46]

Опыт показывает, что тела различной температуры, могущие передавать друг другу тепло, по истечении некоторого времени принимают одинаковую температуру, т. е. приходят в тепловое равновесие. Это происходит и в том случае, когда наши тела заключены в непроницаемую для тепла оболочку, в которой создан вакуум, т. е. исключена возможность теплового обмена в силу теплопроводности и конвекции, и имеет место лишь излучение и поглощение. Излучая и поглощая тепло, тела ч в конце концов принимают одинаковую температуру Т. Тепловое равновесие имеет динамический характер, т. е. и при одинаковых температурах всех тел происходит, конечно, излучение и поглощение лучистой энергии, но так, что в единицу времени тело столько же излучает тепла, сколько оно его поглощает. Отсюда ясно, что если два тела Ах и А-х обладают различной способностью к поглощению, то и  [c.685]


При истечении через вакуумный водослив недопустим прорыв воздуха под струю, т. е. срыв вакуума, так как в таких условиях усилится динамическое воздействие струи на водослив.  [c.155]

По достижении в системе вакуума 130 Па капсула опускается в печь. Выделившийся в процессе коррозии водород диффундирует сквозь стенки капсулы и увеличивает давление в системе. По увеличению давления судят о количестве выделившегося водорода и скорости коррозии. При достижении в системе давления 65-10 Па система вновь вакуумируется до давления 130 Па. При определении скорости коррозии по количеству выделившегося водорода в динамических условиях на участок трубы наваривается кожух, внутренний объем которого сообщается с вакуумной системой. В остальном измерение ведется так же, как и в статических условиях.  [c.151]

Весьма актуальными также являются проблемы криогенной техники, связанные с созданием сверхпроводящих материалов и использованием различного криогенного оборудования резервуаров для хранения сжиженных газов и других емкостей, миниатюрных холодильных газовых машин, криогенных насосов, рабочие поверхности которых, охлаждаемые хладагентами (жидкие азот, водород, гелий), позволяют вымораживать практически все газы из откачиваемого объема и получать вакуум выше 10 мм рт. ст. Важны также низкотемпературные исследования материалов, используемых в ракетно-космических системах, элементы которых, подвергающиеся во время службы действию статических и динамических нагрузок, вибраций, изгибных колебаний и т. д., работают в весьма широком диапазоне температур, начиная с очень низких и включая температуры, близкие к температуре плавления материала.  [c.187]

Например, в случае суперсплава с крупным зерном (поведение I типа) на воздухе наблюдается ускоренная ползучесть и разрушение образца в результате распространения одной-двух трещин, образующихся на внешней поверхности (рис. 13, а). В вакууме (рис. 13, б) разрушение происходит в результате объединения многочисленных полостей, образовавшихся в местах стыка трех зерен внутри образца. На воздухе трещины зарождались в местах пересечения границ зерен с поверхностью (где в результате окисления проис.ходило обеднение выделениями) и распространялись по границам зерен. Еще одна интересная особенность результатов, полученных на воздухе,— наличие ступенек на участках ускоренной ползучести (см. рис. 3 и 4). По-видимому, они связаны с легким образованием трещин в местах выхода межзеренных границ на поверхность (этому соответствуют резкие перепады ступенек) и последующим замедлением или даже прекращением их развития (относительно плоский участок ступеньки). Притупление трещин происходит в окисленном и лишенном фазы у поверхностном слое (рис. 14). Такое прерывистое развитие трещин продлевает продолжительность стадии ускоренной ползучести. Этот эффект имеет, по-видимому, динамический характер, поскольку при испытаниях в вакууме предварительно окисленных образцов такой ступенчатой кривой ползучести не наблюдалось, хотя скорость ползучести и была уменьшена присутствием окалины. При вакуумных испыта-  [c.42]

Магнитные опоры имеют очень малые потери на трение просты в эксплуатации, не требуют смазки и ухода, обладают большой долговечностью, хорошо работают в динамических условиях, не подвержены влиянию влажности, могут работать в вакууме и в условиях радиации.  [c.156]

Здесь — динамический вакуум под рабочим  [c.304]

Метод вакуумного напыления. Сущность метода физического осаждения в вакууме состоит в том, что при высокой температуре в динамическом высоком вакууме происходит интенсивное испарение жидкого (или твердого) металла, пары которого конденсируются на покрываемом изделии и холодных частях установки. При этом давление пара напыляемого металла должно быть таким, чтобы длина свободного пробега атомов его была больше расстояния между зоной испарения и зоной конденсации на подложке. В работе [95] приводится эмпирическая зависимость длины свободного пробега атомов от условий проведения процесса осаждения  [c.105]


Тяга возникает вследствие вакуума в конденсаторе если последний соединен с турбиной при помощи гибкого патрубка, то ее следует учитывать в расчете. При наличии жесткого патрубка тяга не оказывает на фундамент никакого воздействии, и в этом случае усилия от тяги конденсатора в расчет не вводятся. При отсутствии точных заводских данных о тяге конденсатора усилия вычисляют по формуле, рекомендованной техническими условиями на проектирование фундаментов с динамическими нагрузками [Л. 26]  [c.151]

Если система регулирования удержала турбину на холостом ходу, то через 1—2 мин (время динамического заброса) частота вращения турбины установится на каком-то повышенном уровне, определяемом степенью неравномерности САР. Так например, если до сброса турбина несла номинальную нагрузку, а степень неравномерности равна 4,5%, то после сброса нагрузки установившаяся частота вращения составит 3135 мин . Сразу после установления стабильной частоты вращения следует с помощью синхронизатора убавить частоту до номинальной и поддерживать турбину в состоянии готовности к включению в сеть. После сброса нагрузки и перевода турбины на холостой ход необходимо особенно тщательно проконтролировать следующие параметры турбоустановки давление и температуру масла в системе смазки, давление рабочей жидкости в системе регулирования, вакуум, давление пара на эжекторы и уплотнения, осевое и относительное положение роторов, давление пара в деаэраторе, вибрацию и температуру подшипников. В случае  [c.101]

Для охлаждения реакторов используют замкнутые гибкие ленты (рис. 5.6), движущиеся в теплопоглощающей среде (ленточные радиаторы). Контактируя с поверхностью реактора, лента нагревается, а затем при свободном движении отдает тепло окружающей среде или (в" вакууме) излучает тепло в пространство [51 ]. Динамические эффекты, возникающие при стационарном движении абсолютно гибкого стержня, используют при создании баллистической антенны (рис. 5.7) [39 , 41, 44].. Вертикальная или наклонная вытянутая петля быстродвижущегося провода является излучателем антенны.  [c.104]

При сбросе нагрузки (отключении генератора) система регулирования должна быстро уменьшить впуск пара в турбину прикрытием регулирующих клапанов ЦВД и ЦСД. Динамический заброс числа оборотов не должен превышать 8%, чтобы не произошло срабатывания защиты от разгона. Турбина должна остаться на холостом ходу. Система регулирования дополнительно оснащается регуляторами, обеспечивающими автоматическую разгрузку турбины при снижении вакуума и давления свежего пара ниже установленных величин.  [c.129]

На некоторых режимах работы конденсатора в его трубках возможно возникновение довольно существенных термических напряжений растяжения или сжатия. Большей частью это относится к трубкам в зоне охлаждения паровоздушной смеси. Термические напряжения особенно резко возрастают при ухудшении вакуума и при понижении температуры охлаждающей воды. Исследования, проведенные Ленинградским металлическим заводом (ЛМЗ) с одиночной трубкой, показали, что если температура корпуса превышает температуру трубки на 60° С, то термические напряжения в последней могут достигать предела текучести. Конечно, при оценке прочности трубок такими напряжениями пренебрегать нельзя. Учитывая приближенность определения динамических напряжений в колеблющихся трубках при определении расчетных напряжений о, наличием термических напряжений в трубке можно пренебречь, если они не превышают 10% от динамических напряжений.  [c.164]

Прочностные свойства тугоплавких материалов вследствие их чувствительности к окислению на воздухе обычно определяют в вакууме (не менее 0,1 МПа, при натекании воздуха в вакуумную систему примерно 0,1...0,3 мкл/с) или инертной среде. В процессе кратковременных испытаний, когда в качестве защитной среды используют аргон, минимальные температурные выдержки (3...10 мин) приводят к небольшому поверхностному насыщению образцов остаточными газами из объема рабочей камеры и не оказывают заметного влияния на прочностные характеристики. Испытания сплавов ниобия и тантала вообще не желательно проводить в среде аргона или динамического вакуума (при натекании воздуха в вакуумную систему более 0,5 мкл/с). В некоторых случаях, при высокотемпературных механических испытаниях псевдосплавов тугоплавких материалов, содержащих легкоплавкую составляющую, необходимо регулировать интенсивность испарения, тогда в рабочей камере испытательной установки создают инертным газом избыточное давление 0,1.. .10 МПа.  [c.278]

Некоторые характеристики определялись путем использования эксплуатационных возмущений, т. е. без нанесения искусственных возмущений. Например, переходная характеристика вакуум в первом аппарате — вакуум во втором и третьем аппаратах определялась измерением параметров при нормальной эксплуатации установки. Вакуум в конденсаторе часто менялся вследствие колебаний в подаче охлаждающей воды и остановки вакуум-насосов. Измеряя вакуум во втором, третьем и в первом аппаратах, удавалось получить динамические характеристики по этому каналу. Эти характеристики снимались при отключении вакуум-насоса.  [c.86]

При получении динамических характеристик по температуре, вакууму и уровню замеры проводились через 15 или 30 сек по концентрациям — через 5 или 10 мин. Снятие характеристик повторялось многократно (не менее 3—5 раз).  [c.87]

На рис. 32 представлены динамические характеристики по вакууму и температуре вторичного пара в первом аппарате и по вакууму во втором и третьем аппаратах при импульсном изменении отсоса воздуха из конденсатора. Из графиков видно, что по вакууму объект малоинерционен за 30 сек вакуум в третьем аппарате изменяется на 140 мм рт. ст. (18 600 ujM ).  [c.89]


Рис. 32. Динамические характеристики по вакууму и температуре вторичного Рис. 32. <a href="/info/146686">Динамические характеристики</a> по вакууму и температуре вторичного
В областях глубокого вакуума и околокритического давления рп, г, (т стремятся к нулю и 9кр1—(рис. 13-23). Значения постоянной A=0,13-f-0,16. Величина k называ[ется критерием устойчивости. Он характеризует меру отношения энергии динамического потока пара  [c.324]

Приведем перечень основных видов испытаний, которые в настоящее время используют при исследовании механических и технологических свойств металлов и сплавов статические испытания в условиях одноосного напряженного состояния испытания на ударную вязкость и вязкость разрущения пластометрические исследования испытания на статическую и динамическую твердость и микротвердость испытания на предельную пластичность и технологические испытания (пробы) испытания в условиях сложнонапряженного состояния испытания на ползучесть, длительную прочность и жаростойкость испытания на циклическую, контактную прочность, усталость н в условиях сверхпластичности высокоскоростные испытания испытания при наложении высокого гидростатического давления испытания в вакууме, ультразвуковом поле, в условиях сверхпластичности и т. д.  [c.38]

Нельзя не отметить большой работы по модернизации кузнечно-прессовых машин, по разработке и внедрению в производство новых типов. Так, внедрение импульсной, взрывной, беспрессовой штамповки стимулировало разработку соответствующих машинных установок. Созданы установки со взрывом в воде, в вакууме, электроразрядные установки в воде, взрывные со смесью газов. Особое место занимают импульсные установки с сильными магнитными полями. Для штамповки деталей из жаропрочных сплавов и тугоплавких металлов потребовались кузнечно-прессовые машины высоких энергий типа высокоскоростных молотов со скоростями удара 30—50 м сек и со встречным движением рабочих частей, устраняющим действие удара на фундамент. Ведутся разработки штамповочных гидравлических прессов нового типа динамического действия с большой энергоемкостью. Парк кузнечно-прессовых мапшн пополнился уникальными мощными ттамповочны- , ми гидравлическими прессами с усилием до 75 тыс. т. Проводятся боль- пше работы но виброизоляцпи фундаментов паро-воздушных молотов с целью устранения ударного воздействия на грунт при их работе. Вподряются в производство мощные одноцилиндровые гидравлические малогабаритные прессы с усилием До 30 тыс. т для штамповки с высоким давлением рабочей жидкости (до 1000 атм.)  [c.112]

Следует отметить особенности работы последней ступени при малом пропуске пара через нее. Исследованиями, например ВТИ [38], показано, что при работе с малыми объемными расходами пара в корневых сечениях последних ступеней мощных паровых турбин возникает отрыв потока пара, развивающийся с уменьщением нагрузки и с ухудшением вакуума. Это явление исследовано на натурной турбине, у которой в последней ступени d x,ll=2,4. Согласно этим опытам при нагрузке менее 15% номинальной и на холостом ходу в периферийной области направляющих лопаток (///о=0,8 1,0) также наблюдается вихревое течение. При нагрузках N= = (0,08н-0,13)Л/н и на холостом ходу при ухудшенном вакууме до 80—86% был отмечен повышенный уровень динамических иапряжепий на рабочих лопатках последней ступени турбины [91].  [c.12]

Компрессоры [F 04 ( агрегатирование с приводными устройствами В 35/00-35/06, D 25/02-25/06 с качающимися рабочими органами С 21/00 с мускульным приводом В 33/00-33/02 необьемного вытеснения (конструктивные элементы и системы D 29/00-29/70 роторы D 29/26-29/38) объемного вытеснения (конструктивные элементы В 39/00-39/16 для особых рабочих сред В 37/18-37/20) приспосабливание для достижения глубокого вакуума С 25/02 регулирование D 27/00-27/02 с эластичными рабочими органами В 45/00-45/10> динамического диапазона усиления Н 03 G 7/00-7/08 ]  [c.97]

По результатам испытаний Всесоюзного теплотехнического института (ВТИ) принято считать, что в целях снижения влияния динамического напора пара, поступающего в конденсатор, наиболее надежным местом измерения вакуума является участок атмосферной выхлопной трубы между 1конденсатором и атмосферным клапанам.  [c.224]

Значительное выделение газов, ранее логлощейных резиной, не дает возможности применять ее на стороне высокого вакуума в установках, предназначенных для получения динамического -предельного давления ниже Па, и почти полностью  [c.393]

Сталь жаростойкая в окислительной атмосфере, содержащей серу и сернистые соединения, углеродсодержащей, в водороде, вакууме, работает в контакте с высокоглиноземистой керамикой, не склонна к язвенной коррозии, склонна к провисанию при высоких температурах, не вьвдерживает резких динамических нагрузок.  [c.369]

Так, методом динамического горячего прессования в вакууме пакетов из чередующихся слоев жаропрочного никельхромовольфрамово-го сплава ХН60В и слоев проволоки ВТ15 диаметром 0,15—0,18 мм получают композицию, отличающуюся повышенной кратковременной прочностью при 1100—1200 °С по сравнению с неармированной матрицей (рис. 10.15). Прочность вольфрамовой арматуры до конца не используется в связи с появлением дефектов в отдельных волокнах при ударном уплотнении. Модуль упругости ком-  [c.278]

При сварке толстолистовых металлов (рис. 20.9, ff) используют острофокусные пучки электронов. Процесс сварки толстолистового металла состоит из следующих этапов. Вначале ввиду высокой концентрации энергии в пятне нагрева и высокого температурного градиента происходит преимущественное испарение металла. Далее по мере нагрева металл плавится и образуется сварочная ванна. Потоки паров, истекая в вакуум, силой реакции воздействуют на жидкий металл, вытесняя его из зоны нагрева. При этом оголяемые глубинные слои металла, воспринимая энергию электронов, плавятся, испаряются и вытесняются, пока не наступает динамическое равновесие всех сил, действующих на жидкий металл. В результате в его толще образуется канал с большим отношением глубины к диаметру. Воспринимающая энергию электронного пучка боковая поверхность канала имеет площадь, во много раз превышающую сечение пучка. Канал устойчив, так как при заполнении хотя бы части его жидким металлом резко увеличивается количество поглощаемой этим металлом энергии, он вскипает и испаряется.  [c.427]

Стевепс и Хэнинк [30] выбрали материал Ti — 6% А1—4% V с 50 об. % борсика для разработки технологии производства вентиляторных лопастей. Композиционный материал изготовляли из предварительно намотанных матов из волокон борсика диаметром 4,2 мил (0,11 мм), покрытых смесью полистирола и порошка сплава Ti — 6% А1—4% V. Перед укладкой с матами фольгу из титанового сплава толщиной 2,5 мил (0,06 мм) формовали, используя процесс ползучести, до необходимой конфигурации. Слоистую заготовку лопасти заключали в тонкую оболочку из коррозионно-стойкой стали, сконструированную таким образом, чтобы можно было поддерживать динамический вакуум в процессе диффузионной сварки горячим прессованием. Типичные технологические условия горячего прессования отвечали температуре 1600° F (871° С), выдержке 30 мин и давлению 12 ООО фунт/кв. дюйм (844 кгс/см ). Образцы, необходимые для характеристики материала, были приготовлены с соблюдением тех же технологических условий, которые применялись в производстве лопастей вентилятора. Свойства этих композиционных материалов представлены в табл. 7.  [c.317]



Смотреть страницы где упоминается термин Вакуум динамический : [c.482]    [c.105]    [c.198]    [c.173]    [c.82]    [c.63]    [c.108]    [c.247]    [c.268]    [c.238]    [c.117]    [c.98]    [c.156]    [c.511]    [c.292]    [c.453]    [c.309]   
Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.427 ]



ПОИСК



Вакуум



© 2025 Mash-xxl.info Реклама на сайте