Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Действующие переменные силы при колебаниях

Действующие переменные силы при колебаниях  [c.217]

Для обратного преобразования электрических колебаний в звуковые применяется громкоговоритель. В громкоговорителе катушка 1 (рис. 199) из медного провода соединена с гибкой мембраной 2 и коническим диффузором 3. Катушка находится в магнитном поле постоянного магнита 4. При протекании переменного тока катушка под действием переменной силы Ампера колеблется с частотой колебаний силы тока. Катушка заставляет колебаться с такой же частотой мембрану и диффузор. Эти коле-  [c.193]


Явление резонанса. В системе при возбуждении колебаний под действием периодически изменяющейся внешней силы амплитуда колебаний сначала постепенно увеличивается . Через некоторое время после начала действия переменной силы устанавливаются вынужденные колебания с постоянной амплитудой и с периодом, равным периоду внешней силы (рис. 217).  [c.219]

Контактная поверхность преобразователя обычно имеет форму сферы с радиусом кривизны Ri = 2-f-25 мм. Преобразователь прижимается к изделию с постоянной силой F ). В зоне контакта действует также переменная сила, обусловленная колебаниями преобразователя (излучение) или изделия (прием). Передаваемые через зону контакта упругие колебания могут быть непрерывными или импульсными. Для приемных преобразователей условие Fm < Fo Pfn— амплитуда переменной составляющей силы) выполняется всегда, для излучающих — в большинстве случаев.  [c.291]

Зубчатое зацепление служит для передачи вращательного движения от механизма к механизму с преобразованием мощности и частоты вращения. На зуб, находящийся в зацеплении, действует переменная сила нагружения, вызывающая в нем колебания с частотой повторения (зубцовой частотой), кратной произведению числа зубьев на оборотную частоту. При этом одновременно действует несколько факторов, вызывающих существенное усложнение виброакустического сигнала неуравновешенность вращающихся деталей приводит к появлению в спектре исследуемого сигнала частот кратных оборотной частоте /оз, кинематические погрешности, допущенные при нарезании зубьев и сборке колес, приводят к появлению частот, кратных числу зубьев делительного колеса станка, на котором нарезается зубчатое колесо (см. табл. 1), а также к амплитудной и фазовой модуляции колебаний на зубцовой частоте, что проявляется в спектре в виде набора боковых составляющих fg kf .  [c.389]

На груз массы ш, подвешенный на пружине с коэффициентом жесткости с, действует переменная сила Р = Pq sin pt. Для установившегося режима колебаний определить такую амплитуду силы Pq при которой амплитуда перемещений груза достигает величины Aq = 5 см. В расчетах принять ш = 2 кг, с = 1000 Н/м, р = 30 с .  [c.436]

Парам ические колебания возникают при наличии какого-либо переменного параметра, создающего эффект, аналогичный действию переменной силы. Обычно таким параметром является переменная жесткость детали или узла, например наличие шпоночной канавки на валу или переменная жесткость подщипников качения >ис. 3.1.5, в, г). Это приводит к тому, что при вращении вала при постоянной внешней силе Р прогибы вала будут периодически меняться.  [c.471]


Важной особенностью аэродинамических сил является то, что они могут зависеть от перемещений и деформаций части вертолета, на которую действуют. Например, вследствие действия аэродинамических сил возникают колебания лопастей, при которых в свою очередь изменяются и аэродинамические силы. В определенных случаях при совместном действии аэродинамических, инерционных сил и сил упругости колебания конструкции и действующие в ней переменные напряжения начинают увеличиваться по времени до опасных размеров, несмотря на то, что внешние условия (параметры режима полета) не изменяются. Имеет место аэроупругая или механическая динамическая неустойчивость конструкции. Для обеспечения безопасной эксплуатации вертолета необходимо устранить возможность возникновения неустойчивости конструкции, что также является одной из задач комплекса работ по прочности.  [c.23]

Теория колебаний представляет собой обширный раздел современной физики, охватывающий весьма широкий диапазон вопросов механики, электротехники, радиотехники, оптики и пр. Особое значение имеет теория колебаний для прикладных задач, встречающихся в инженерной практике, в частности в вопросах прочности машин и сооружений. Известны случаи, когда строительное сооружение, рассчитанное с большим запасом прочности на статическую нагрузку, разрушалось под действием сравнительно небольших периодически действующих сил. Во многих случаях жесткая и весьма прочная конструкция оказывается непригодной при наличии переменных сил, в то время как такая же более легкая, и на первый взгляд менее прочная, конструкция воспринимает эти усилия совершенно безболезненно. Поэтому вопросы колебаний и вообще поведения упругих систем под действием переменных нагрузок требуют от конструктора особого внимания.  [c.459]

Средняя мощность переменного тока р или просто мощность переменного тока Р при совпадении фаз колебаний силы тока и напряжения определяется через действующее значение силы тока I и напряжения U выражением  [c.241]

Рассмотрим движение системы материальных точек, находящихся под действием восстанавливающих сил, образующих потенциальное силовое поле, и некоторых возмущающих сил, являющихся явными функциями времени. Конечно, система может находиться под действием сил с более общими физическими свойствами — сил, являющихся функциями времени, обобщенных координат, обобщенных скоростей и в некоторых случаях — обобщенных ускорений 2). Но при изучении малых колебаний действие таких сил может проявиться в том, что линейные дифференциальные уравнения будут иметь переменные коэффициенты ), Здесь не изучаются эти более сложные случаи движения системы. Квазигармонические движения точки рассматриваются в конце этой главы.  [c.263]

На рис. В.7 приведена простейшая электронно-магнитная схема камертонного регулятора с распределенной массой на одной электронной лампе. Представленная схема относится к автоколебательным системам. При колебании ветви / камертона вследствие изменения зазора А изменятся магнитный поток и в обмотках электромагнита 2 возникает переменная э. д. с., которая, поступая на сетку электронной лампы (триода) 5, вызывает колебания анодного тока лампы, частота которого равна частоте изменения э. д. с. и, следовательно, частоте колебаний ветви камертона. Анодный ток, протекая по обмоткам электромагнита 4, создает переменное магнитное поле, приводящее к переменной силе притяжения, которая раскачивает ветвь 5 камертона на резонансной частоте. Колебания ветви 5, в свою очередь, усиливают колебания ветви 1, что приводит к возрастанию э. д. с. в цепи сетки лампы. При установившемся режиме в системе возникнут совместные механические п электрические колебания с частотой, близкой к частоте свободных колебаний ветви камертона. Если прибор с камертоном находится на ускоренно движущемся объекте, то действующая на ветви камертона инерционная нагрузка q (рис. В.7) изменяет зазоры, что приводит к отклонению режима работы системы от расчетного, поэтому требуется оценить возможные погрешности в показаниях прибора, возникающие нз-за сил инерции (в том числе и случайных).  [c.6]


Динамическое обобщенное перемещение Од какой-нибудь точки системы в произвольный момент времени t колебательного движения складывается из постоянного обобщенного перемещения 8, соответствующего виду деформации системы при колебании от статического действия груза Q и собственного веса системы, и переменного обобщенного перемещения, вызванного возмущающей силой  [c.395]

Силы С и К, передаваясь на вал, будут загружать его добавочно на изгиб (динамическая нагрузка). Действие этих сил, переданное через вал, испытывают и подшипники вала. Силы С и К, как связанные со звеном, будут вращаться с угловой скоростью звена, поэтому их воздействие на вал и подшипники будет переменного направления. Нагрузка такого типа вообще очень нежелательна, так каж она будет способствовать возникновению вибрации как самого вала (поперечные колебания — при недостаточной поперечной жесткости вала), так и фундамента машины, передаваясь на него через подшипники. Момент М- , не отражаясь на подшипниках,  [c.79]

Гармонические колебания системы с одной степенью свободы, переменной жесткостью и демпфированием (при действии возбуждающей силы]  [c.199]

Выясним, при каких условиях возникают колебания системы, т. е. происходит динамическая потеря устойчивости под действием следящей силы и параметрического возмущения Xo(i). Следует предварительно отметить, что понятие устойчивости систем с переменными параметрами в виде случайных функций времени не имеет в настоящее время единого толкования.  [c.249]

Действие силы переменной частоты. Выше (см. рис. 1.9) был дан пример возникновения гармонической возмущающей силы при вращении неуравновешенного ротора. При этом предполагалось, что угловая скорость вращения постоянна во времени. Рассмотрим колебания, развивающиеся в процессе разгона машины, когда угловая скорость постепенно увеличивается от нуля до некоторого конечного значения. Особенно важен случай, когда в процессе разгона происходит переход через резонанс. Если переход совершается не очень медленно, то возникающие колебания значительно отличаются от колебаний при установившемся режиме. Поэтому было бы неверным оценивать опасность перехода через резонанс по тем амплитудам, которые могут быть вычислены при расчете установившихся резонансных колебаний.  [c.223]

Обозначим через /=Q/ /(48 /) наибольший статический прогиб балки под действием груза Q, а через 2 — переменный добавочный прогиб среднего сечения балки при колебаниях. Предположим, что при свободных колебаниях добавочные прогибы балки меняются по ее длине по тому же уравнению, что и при статической нагрузке силой Q это последнее имеет вид (см. 85)  [c.508]

Таким образом, облопачивание на колесе имеет бесчисленное множество собственных частот и главных форм колебаний. Но сами колебания возникают только при воздействии на систему сил, изменяющихся во времени. Теоретическое рассмотрение и экспериментальные исследования показывают, что при вращении на конкретную лопатку действует переменная аэродинамическая сила q, зависящая от угла поворота лопатки ф (рис. 16.10). Ее характерная особенность — строгая периодичность, определяемая одним оборотом колеса. Возникновение неравномерной аэродинамической нагрузки связано со многими причинами, главными из которых являются следующие.  [c.433]

Таким образом, вследствие случайного смещения ротора появляется ста, действующая перпендикулярно смещению, поэтому произойдет перемещение ротора слева направо и появится сила, действующая снизу вверх и т.д. Иными словами, однажды возникнув, сила уже не исчезает, а продолжает вращаться вместе с ротором, и поскольку ее направление близко к направлению скорости вала, создаются условия для возбуждения интенсивных колебаний. Можно показать, что частота вращения этой самоподдерживающейся циркуляционной силы примерно равна со/2. Заметим, что такая же венцовая сила возникает при смещении вала и появлении в диафрагменном уплотнении неравномерной по окружности утечки, что также вызывает переменность силы по окружности.  [c.517]

Колебания статора. Статор состоит из шихтованного сердечника с помещенной в нем обмоткой и цельносварного корпуса. Корпус закрепляется на фундаменте турбоагрегата. Массы сердечника статора — несколько сот тонн, корпуса —десятков тонн. Колебания статора турбогенератора в стационарном рабочем режиме вызываются действием переменного магнитного поля, создаваемого в основном вращающимися электромагнитами ротора. Переменные электромагнитные силы возбуждают вибрации сердечника и обмотки статора. Для уменьшения передачи вибраций с сердечника на корпус турбогенератора и фундамент турбоагрегата сердечник эластично подвешивается в корпусе (рис. 2, где / — ротор турбогенератора 2 — сердечник статора 3 — упругая подвеска 4 — корпус статора 5 — фундамент турбоагрегата). Наибольшие напряжения возникают при вибрации статора двухполюсного турбогенератора, ибо при большем числе полюсов соответственно больше узлов имеет по окружности форма колебаний сердечника статора и тем меньше амплитуда колебаний и напряжения. Сложность проблемы для мощных турбогенераторов обусловливается как действием значительных переменных электромагнитных сил, так и тем, что статор представляет собой сборную конструкцию с возможными зазорами между сердечником и элементами эластичной подвески, между сердечником и обмоткой статора. Это в ряде случаев порождает виброударные явления, приводящие к усталостному разрушению элементов статора.  [c.521]

Электродинамический. В этом случае генерируются силы, действующие на проводник с током, помешенный в магнитное поле. Эти силы переменны вследствие изменения во времени тока и поля. При колебаниях проводника возникает добавочная  [c.192]


На основе анализа усталостной теории эрозионного разрушения материалов при граничном трении, развитой И. В. Крагельским, и сопоставления ее с механизмом эрозионного разрушения материалов в потоках газа и жидкости М. В. Ханин пришел в последнее время к выводу, что эрозия как при трении, так и при воздействии потока жидкости представляет собой процесс усталостного разрушения поверхностного слоя, происходящего в результате вынужденных колебаний частиц материала, на выступающие части которого действуют переменные силы. При этом были получены формулы для определения скорости эрозионного разрушения материалов и величины шероховатости их поверхности.  [c.448]

Свободные колебания возникают в системе, не подверженной действию внешних переменных сил, при начальном отклонении ее от положения равновесия. При этом система колеблется с собственной частотой Vo или с собственной круговой частотой Шо. Если эти колебания происходят под действием потенциальных сил, то они будут гармоническими (/l= onst), причем сумма кинетической и потенциальной энергий меняться не будет.  [c.203]

В настоящей заметке мы подробнее выясняем вопрос о вибрациях рельса, исследуем вынужденные колебания, возникающие в рельсе при действии переменной силы, приложенной в какой-либо точке рельса, и показываем, что амплитуда этих колебаний может значительно отличаться от статических прогибов рельса лишь в том случае, если частота переменной силы приближается к частоте собственных колебаний рельса. Далее мы выясняем, какое влияние может иметь поступательная скорость движения колеса на прогиб рельсат и показываем, что при практически достижимых скоростях этовлия, ние невелико. В заключение мы рассматриваем колебания, возникающие в рельсе при движении по рельсу переменной силы с постоянной скоростью.  [c.359]

При решении ряда технических вопросов прочности приходится иметь дело с задачами динамики. Например, при расчете многих машинных частей, участ-вуюпцих в движении, приходится принимать во внимание силы инерции. И напряжения, вызываемые этими силами, иногда во много раз больше тех, которые получаются от статически действующих нагрузок. Такого рода условия мы имеем при расчете быстровращающихся барабанов и дисков паровых турбин, шатунов быстроходных машин и паровозных спарников, маховых колес и т. д. Решение таких задач может быть выполнено без особых затруднений, так как здесь деформации не играют роли мы можем при подсчете сил инерции рассматривать тела как идеально твердые и потом, присоединив найденные таким путем силы инерции к статическим нагрузкам, привести задачу динамики к задаче статики. Эти задачи достаточно полно были рассмотрены в курсе сопротивления материалов, и мы на них здесь останавливаться не будем, а перейдем к другой группе вопросов динамики — к исследованию колебаний упругих систем под действием переменных сил. Мы знаем, что при некоторых условиях амплитуда этих колебаний имеет тенденцию возрастать и может достигнуть таких пределов, когда соответствующие ей напряжения становятся опасными с точки зрения прочности материалов. Выяснению таких условий, главным образом по отношению к колебаниям призматических стержней, и будет посвящена настоящая глава. Как частные случаи рассмотрим деформации, вызываемые в стержнях внезапно приложенными силами, и явление удара.  [c.311]

Генераторы переменного тока имеют ряд преимуществ по сравнению с генераторами постоянного тока. Ротор генератора переменного тока может вращаться с большей угловой скоростью, чем якорь генератора постоянного тока. При большой угловой скорости якоря генератора постоянного тока ухудшается контакт между щетками и ламелями коллектора вследствие колебаний щеток при скольжении по неровному коллектору. Кроме того, под действием центробежных сил при большой угловой скорости возможен выход обмоток из пазов якоря. Щетки обмотки возбуждения генератора переменного тока скользят по сплошному кольцу, поэтому возможна работа с большей угловой скоростью, а обмотка возбуждения надежно закреплена под полюсами. 0 позволяет увеличить передаточное число в приводе от коленчатого вала двигателя к генератору, а следовательно, напряжение на клеммах генератора переменного тока достигает йоминаль-ной величины при меньшей угловой скорости коленчатого вала, чем в генераторах постоянного тока. При этом уменьшается йродолжи-тельность питания потребителей током аккумуляторной батареи, улучшаются условия ее работы, а срок службы увеличивается. Щеточный узел генератора переменного тока более долговечен так как щетки работают по сплошному кольцу и через них проходит лишь ток возбуждения. У генератора постоянного тока щетки работают по коллектору, состоящему из отдельных ламелей, а через щетки проходит ток нагрузки генератора. Таким образом, генераторы переменного тока являются более надежными, а объем их технического обслуживания меньше, чем у генераторов постоянного тока. Кроме того, генераторы переменного тока при той же мощности имеют меньшие габаритные размеры и вес по сравнению с генераторами постоянного тока.  [c.98]

ЭДС =ВцЕку1п, где п — число витков катушек Во — индукция в магнитной цепи (в отсутствие колебаний) к — индуктивность катушек. С другой стороны, если к катушкам приложить переменное напряжение Ь, создающее в них ток (рис. 4,86), то при условии В Во (где В —переменная составляющая индукции в магнитной цепи) на мембрану будет действовать переменная сила (усилие) = ВоЬк1 /п. Ввиду этого электромеханический преобразователь электромагнитного типа имеет коэффициент электромеханической связи Ксв = ВоЬк/п.  [c.79]

Действующие значения нц-пряжевия в силы тока. Действующим значением силы тока I называется сила постоянного тока, выделяющего в проводнике за то же время такое же количество теплоты, что и переменный ток. При амплитуде 1т гармонических колебаний силы тока действующее значение 1 силы тока равно  [c.241]

Если на сплошную колебательную систему действует переменная внешняя сила, то она вызывает вынужденные колебания в системе. При этом наблюдаются явления ])езонанса. 1 ак же как и в системе с одной степенью свободы, в сплошных системах в момент возникновения внешней силы возбуждаются собственные колебания, которые постепенно затухают. Для установления явления резонанса необходимо известное время, тем большее, чем меньше затухание собственных колебаний в системе.  [c.657]

И является периодической функцией t, однако период его 1/vi несоизмерим с периодами других аналогичных множителей. Поэтому в целом эта функция не является периодической. В таких случаях говорят, что рассматриваемая функция является многопериодической или почти-периодической. (Такого рода функция уже встречалась нам при рассмотрении гармонического осциллятора с несколькими степенями свободы.) Рассмотрим, например, колебания точки, находящейся под действием восстанавливающих сил, направленных вдоль осей х и у. Эти координаты являются разделяющимися переменными, изменяющимися по гармоническому закону с частотами v и Vy. Повернем теперь систему координат на 45° вокруг оси z. Тогда мы получим новые координаты х, у, изменяющиеся по закону  [c.324]


Покажем, что даже при малых (линейных) колебаниях цапфы неуравновешенная сила при наличии зазора будет передавать на корпус не чисто гармоническое возбуждение тп р е ousin at, а полигармоническую силу, являющуюся причиной многих резонансов, при которых частота колебаний будет кратна угловой скорости вращения ротора. Представим в виде полигармонической силы вертикальную (обычно большую) составляющую Р силы Р (Vni. 2). Отметим, что в этом случае следует учитывать переменную составляющую силы, действующую на опору. Она будет равняться  [c.215]

Приводимые ниже результаты относятся к случаю, когда вибрирующая поверхность является плоской и совершает поступательные колебания, а поле задаваемых сил, действующих на частицу, однородно и, в частности, представляет собой поле силы тяжести. Эти результаты, однако, могут быть использованы и в общем случае, если перемещение частицы по поверхности за период колебаний мало по сравнению с радиусами кривизны поверхности, а также с расстояниями, на которых траектории колебаний и задаваемые силы претерпеваюг сколько-нибудь существенные изменения. При указанных условиях переменность вдоль траектории движения частицы поля задаваемых сил, поля траектории колебаний и ориентации элемента поверхности, на котором находится частица, может быть учтена в окончательных результатах чисго параметрически малыми обычно оказываются и кориолисовы силы при наличии поворотных колебаний поверхности.  [c.13]

Простейшей широко известной моделью является модель, показанная на рис. 8 она имеет одну колебательную степень свободы в направлении скольжения. Необходимое для потери устойчивости и появления автоколебаний условие фазового отставания изменения силы трения от колебаний системы объясняется падающей зависимостью силы трения от скорости скольжения. Такая 3aBH HM0 Tj экспериментально наблюдается пр малых скоростях скольжения смазанных поверхностей. При колебаниях скорость скольження yBf личивается или уменьшается w величину скорости колебанш--Соответственно изменяется сила трения при движении скользящего тела пр> колебаниях в сторону действия силы трения скорость уменьшается и сила трени возрастает при движении против силы трения — скорость увеличивается и сил -трения уменьшается. Работа переменной составляющей силы трения за цикл колеб ний идет на поддержание колебаний. Чем круче зависимость силы трения от скорост" тем шире область неустойчивости движении и существования автоколебаний. ОднаК - применительно к станкам и ряду других конструкций это объяснение является чрс." мерно условным. При наличии смазки сила трения уменьшается в области так иазЫ  [c.126]

Электродинамические возбудители. В этом случае с колебательной системой соединяется проводник с током, помещенный во внешнее магнитное поле. Переменные во времени силы, действующие на проводник и, следовательно, на колебательную систему, создаются гсутем изменения внешнего поля или тока в проводнике. При колебаниях изменяется коэффициент взаимной индукции между контурами тока в проводнике, связанном с колебательной системой, и тока, создающего внешнее поле. Это вызывает дополнительное изменение токов и магнитного поля, чем обусловлено взаимодействие возбудителя с колебательной системой.  [c.390]

На стадии проектирования турбомашины возбуждающие силы, действующие на ротор, неизвестны, в связи с чем ограничения на такие параметры, как переменные напряжения или соответствующие запасы, обычно не включаются в рассмотрение. Однако имеющийся опыт по созданию и последующей работе аналогичных конструкций может служить информацией о наиболее опасных диапазонах собственных частот колебаний ротора или ьрэектируе-мой ступени. В этом случае ограничения могут быть косвенными и накладываться на собственные частоты колебаний. В частности, по аналогии с ограничениями по запасам статической прочности, приведенными в 19, может быть задано условие, чтобы частота вращения диска при колебаниях по данной форме не была ниже заданной. В роторах в основном встречаются связанные колебания систем, й, в частности, дисков с лопатками. В связи с этим при проектировании диска отстройку по частоте следует производить, учитывая этот фактор.  [c.215]


Смотреть страницы где упоминается термин Действующие переменные силы при колебаниях : [c.460]    [c.60]    [c.196]    [c.119]    [c.466]    [c.243]    [c.247]    [c.689]    [c.429]    [c.503]   
Смотреть главы в:

Прочность, устойчивость, колебания Том 3  -> Действующие переменные силы при колебаниях

Прочность Колебания Устойчивость Т.3  -> Действующие переменные силы при колебаниях



ПОИСК



Гармонические колебания системы с одной степенью свободы, переменной жесткостью и демпфированием (при действии возбуждающей колебания силы)

Переменные действия

Сила переменная



© 2025 Mash-xxl.info Реклама на сайте