Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирующие элементы — физико-механические свойства

Введение легирующих элементов улучшает физико-механические свойства стали (прочность, твердость, жаропрочность и т. д.).  [c.122]

Легирующие элементы изменяют физико-механические свойства стали.  [c.25]

Легированный чугун. Введение в состав чугуна хрома, никеля, меди, титана, молибдена и других легирующих элементов сопровождается увеличением механических свойств и улучшением физико-химических. В ряде случаев можно получать отливки со специальными свойствами.  [c.177]


Легирующий элемент, сообщающий ряду сплавов цветных и черных металлов весьма ценные физико-механические свойства  [c.348]

Легирующие элементы — физико-механические свойства 341—343 Легкие элементы — Физико-механические свойства 340—343 Ледебурит 360  [c.525]

Железо-графит пористый — Испытания на износ 4 — 260 Железо-карбид железа, система — Диаграмма состояния 3 — 321 Железо-легирующий элемент. система — Диаграмма состояния 3 — 328 Железо-кремний, система — Диаграмма состояния 3 — 330 Железо-легирующие элементы, система — Диаграмма состояния 3 — 328 Железо-марганец, система — Диаграмма состояния 3 — 338 Железомедные сплавы металлокерамические — Физико-механические свойства 4 — 257  [c.76]

Постоянное увеличение скоростных характеристик машин и оборудования, повышение надежности и долговечности их требует все более широкого применения в машиностроении новых высокопрочных материалов с повышенными физико-механическими свойствами (жаропрочных, твердых и коррозионноустойчивых металлов и сплавов). В качестве легирующих элементов для конструкционных сталей, помимо хрома и никеля, во все большей степени применяются труднообрабатываемые металлы — молибден, ванадий и т. д.  [c.115]

В качестве методической основы изложения материалов выбраны следующие положения. Основное внимание уделено физико-механическим свойствам титана современного производства и влиянию на них различных легирующих элементов с тем, чтобы конструкторы и технологи могли достаточно свободно и рационально выбирать тот или иной серийный сплав. Специально рассмотрено влияние вида и габаритов полуфабрикатов на свойства сплавов, что связано с различным характером их структуры (гл. I, И). Из механических свойств наиболее подробно рассмотрены те, которые определяют работоспособность деталей различных узлов и механизмов — ползучесть и длительная прочность, усталость, коррозионно-механическая прочность и т. п. (гл. III, IV). Гл. V посвящена антифрикционным свойствам титана и методам их улучшения, так как эти характеристики в значительной мере лимитируют применение титановых сплавов в различных механизмах с узлами трения.  [c.4]

В работах [2-4, 15-31] установлено, что в процессе нагрева и охлаждения при закалке и старении в МСС протекают сложные структурные изменения, обусловленные перераспределением атомов легирующих элементов с образованием различного количества остаточного аустенита, которые оказывают существенное влияние на физико-механические свойства сталей.  [c.161]


В качестве основных легирующих элементов в конструкционных сталях применяют хром до 2 %, никель 1-4 %, марганец до 2 %, кремний 0,6-1,2 %. Такие легирующие элементы, как Мо, W, V, Ti, обычно вводят в сталь в сочетании с Сг, Ni с целью дополнительного улучшения тех или иных физико-механических свойств. В конструкционных сталях эти элементы обычно содержатся в следующих количествах, % Мо 0,2-0,4 W 0,5-1,2 V 0,1-0,3 Ti 0,1-0,2.  [c.281]

Хром является распространенным и относительно дешевым среди легирующих элементов, которые применяются как для легированных, так и для спеченных сталей с целью повышения прочности, износостойкости и придания им особых физико-механических свойств. Хром образует с углеродом карбиды различного химического состава, которые-прочнее и устойчивее цементита. Свойства спеченных хромистых сталей в значительной степени зависят от способов введения хрома и деформирующейся в зависимости от этого структуры.  [c.80]

Решающее влияние на качество непрерывного слитка оказывает р жим вторичного охлаждения — распределение интенсивности охлаждения по длине и периметру непрерывного слитка. Практика непрерывной разливки показывает, что одним из основных дефектов непрерывного слитка являются горячие трещины, в основном связанные с физико-механическими свойствами отливаемой стали при температурах, близких к температуре интервала кристаллизации. В работе [233, с. 5, 145, 212] было установлено, что сильное влияние на эти свойства оказывает химический состав стали. По данным [234], наибольшей склонностью к образованию трещин обладает сталь с 0,16—0,18% С. Отрицательно влияет повышение содержания углерода, серы и фосфора, а также некоторых легирующих элементов.  [c.182]

Особенность производства сталей переходного класса состоит в том, что необходимо соблюдение суженных пределов химического состава металла по основным легирующим элементам. Только при этом условии возможно получение нестабильного аустенита, обеспечивающего при дальнейшей термической обработке требуемый комплекс физико-механических свойств. С этой целью в процессе плавки, перед ее выпуском, выполняют контроль фазового состава магнитным методом на отливаемых пробах [141]. 204  [c.204]

Быстрорежущие стали могут быть как одно-, так и многокомпонентными в зависимости от числа основных легирующих элементов. Благодаря легированию одновременно несколькими компонентами можно в конкретных производственных условиях выбрать такую марку быстрорежущей стали, которая обладает наиболее благоприятным сочетанием физико-механических свойств. Химический состав быстрорежущих сталей и деление их на группы в зависимости от легирующих элементов показаны в табл. 2.3.  [c.23]

X, Х09 9Х Х05 7X3 9ХС Обладает более высокими режущими свойствами, чем углеродистая, за счет легирующих элементов, которые улучшают физико-механические свойства и увеличивают красностойкость стали до 350— 400° С. Это дает возможность изготовлять режу-щий инструмент, способный работать при более высоких режимах резания Токарные, строгальные и долбежные резцы Деревообделочные инструменты Шаберы и гравировальные инструменты Корпусы многолезвийных инструментов с направляющими фасками за пластинками твердого сплава Сверла, развертки, фрезы, метчики, плашки и гребенки  [c.42]

Учение об изменении внутреннего строения и физико-механических свойств сплавов в результате теплового воздействия, не исчезающих после прекращения этого воздействия, составляет теоретические основы термической обработки. Общее представление о превращениях, протекающих в железоуглеродистых сплавах в результате теплового воздействия, можно получить из диаграммы состояния железо — цементит и железо — углерод. Как в сталях, так и в чугунах всегда присутствуют кремний, марганец, фосфор, сера, а в легированных сплавах — никель, хром, молибден, медь, ванадий, титан и др. Легирующие элементы и примеси изменяют положение линий диаграммы, на которых отложены критические точки структурных превращений. Одни элементы снижают температуру превращений, а другие — повышают. Без учета влияния этих элементов невозможно правильно, пользуясь только лишь диаграммой, разработать режимы термической обработки.  [c.92]


Легированным цементитом называют цементит, в котором часть атомов железа заменена атомами легирующего элемента. Основная цель легирования — повышение физико-механических свойств стали.  [c.86]

Инструменты из легированной инструментальной стали, имея после закалки и отпуска твердость НкС 61—64, могут выдерживать в процессе резания температуру не более 250—300°, что позволяет использовать их при обработке со скоростью резания, превышающей лишь на 10—40% скорость резания для инструментов из углеродистой стали. Вместе с тем легированные стали более износостойкие, обладают хорошей прокаливаемостью и менее подвержены деформациям при закалке (в особенности хромистые стали). Это объясняется теми физико-механическими свойствами, которые придает стали тот или иной легирующий элемент.  [c.11]

Повышение жаропрочности конструкционных материалов, применяемых в современном машиностроении, достигается в основном путем увеличения в них содержания легирующих элементов. При этом ухудшается обрабатываемость этих материалов резанием. Знание характера влияния химического состава, структуры, физико-механических свойств, термической обработки и истирающей способности жаропрочных сталей и сплавов на их обрабатываемость позволяет в производственных условиях, еще до запуска деталей в обработку, приближенно определить для них режимы резания и машинное время.  [c.44]

В приборостроении широко применяют различные сплавы с самыми разнообразными физическими и физико-механическими свойствами По физическим свойствам и областям применения сплавы делят на группы магнитномягкие, магнитнотвердые, омического сопротивления, с заданным коэффициентом теплового расширения, с высокими упругими свойствами, сверхпроводящие и термобиметаллы. Эти сплавы называют прецизионными. Состав таких сплавов должен быть точным колебания содержания легирующих элементов должны быть небольшими, в результате чего обеспечивается получение оптимальных свойств. С этой же целью в ряде случаев применяют специальные виды термической обработки.  [c.159]

Вводимые в сталь легирующие элементы улучшают ее механические, физические и химические свойства. Для легирования стали применяют хром, никель, марганец, кремний, вольфрам, молибден, ванадий, кобальт, титан, алюминий, медь и другие элементы. Марганец считается легирующим компонентом при массовом содержании более 1 %, а кремний — более 0,8 %. Большинство легированных сталей приобретает высокие физико-механические свойства лишь после термической обработки.  [c.107]

Вводимые легирующие элементы изменяют механические и физико-химические свойства стали. Легирование значительно повышает прочность и твердость при сохранении хорошей вязкости стали, увеличивает ее прокаливаемость, а также позволяет проводить закалку на мартенсит в умеренных охладителях, что уменьшает возможность появления трещин и коробления. Легирование придает сталям ряд особых свойств жаропрочность, окалиностойкость, кислотоупорность и др.  [c.155]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]

Легирующими элементами называют химические элементы, специально введенные в сталь для получения требуемых строения, структуры, физико химических и механических свойств  [c.7]

Сплавы на основе никеля. Для экстремальных условий эксплуатации, когда на металл одновременно воздействуют среды высокой агрессивности, высокие температуры и давления, комплекса физико-механических и коррозионных свойств железоникелевых сплавов бывает недостаточно. В этом случае применяют довольно дорогостоящие никелевые сплавы, в которых железо может присутствовать в незначительных количествах. Никель обладает достаточно высокой коррозионной стойкостью во многих агрессивных средах, способностью растворять в большом количестве многие элементы, такие как хром, молибден, железо, медь, которые являются основными легирующими элементами коррозионностойких никелевых сплавов.  [c.356]


Сопротивление деформированию инструментальных Сталей в основном зависит от процентного содержания углерода. Чем больше в них углерода, тем ниже пластичность и выше сопротивление деформированию. Наличие в этих сталях вредных примесей (особенно серы и фосфора) приводит к понижению пластичности из-за появления красно- или синеломкости. Влияние легируюш,их элементов иа пластичность и механические свойства инструментальных сталей происходит вследствие замещения в решетке атомов железа атомами легирующего элемента. На основе физико-химических (коэффициента теплопроводности, температуры фазовых превращений и др.) и механических свойств (пластичности, сопротивления деформирования устанавливают температурный режим нагрева металла под ковку, температуру начала и конца ковки, выбор схемы процесса ковки и формы бойков, а также степень и скорость деформации.  [c.495]

Легированные стали — это стали, в состав которых введены легирующие элементы для улучшения физико-химических и механических свойств. В зависимости от количества вводимых элементов получают коррозионно-стойкие, жаростойкие (окалиностойкие) и жаропрочные стали.  [c.55]

Легированный аустенит. В легированных сталях, кроме углерода, в решетке аустенита находятся также и легирующие элементы, образующие с 7-железом твердые растворы замещения. Свойства такого легированного аустенита существенно отличаются от свойств аустенита углеродистой стали. Легированный аустенит обладает высокой коррозионной стойкостью, механической прочностью при комнатных и при высоких температурах (жаропрочностью). Легированный марганцем (около 13%) аустенит обладает высоким сопротивлением износу трением. Изменяются и другие физико-химические свойства аустенита.,  [c.215]

Легированные чугуны. Эти чугуны наряду с обычными примесями содержат легирующие элементы хром, никель, медь, титан, молибден и др. Легируют главным образом серые чугуны, а в некоторых случаях и белые. Легирующие элементы улучшают механические свойства чугуна и придают ему особые физико-химические свойства. Содержание серы в них допускается не выше 0,03—0,04%, а фосфора до 0,30%. Хром повышает твердость, прочность и износоустойчивость чугуна, никель улучшает обрабатываемость.  [c.72]

Для придания сталям повышенных физико-механических или особых технологических свойств в них вводят такие металлы, как никель, хром, марганец, кремний, вольфрам, молибден, ванадий, титан, кобальт, медь, алюминий и другие, и эти стали называют легированными или специальными. По назначению их делят на конструкционные и инструментальные, а по свойствам — на износоустойчивые, нержавеющие, жароустойчивые, жаропрочные, магнитные и стали со специальными физическими свойствами. Высокая стоимость легированных сталей и дефицитность легирующих элементов — присадок — вполне окупаются их длительной службой в особых условиях, в которых изделия из углеродистой стали непригодны.  [c.7]

В зависимости от легирующих элементов, входящих в состав стали,она приобретает различные физико-механические свойства. Например, присадка хрома повышает прочность, износоустойчивость и коррозийную стойкость никель повышает пластичность и т. д. Хромистая сталь 50Х имеет предел прочности при растяжении ПО кг1мм примерно в 2 раза больший, чем углеродистая сталь марки 50 (63 кг/мм ). А это означает, что при одинаковых размерах детали из хромистой стали выдерживают нагрузку в 2 раза большую, чем из углеродистой. Если же добавить в сталь более 12в/о хрома, то она приобретает новые свойства — становится нержавеющей, не окисляется на воздухе.  [c.149]

Прочность металлов увеличивают, во-первых, путем легирования сталей элементами, образующими твердые растворы внедрения или замещения и вызывающими искажение решетки растворителя. При некоторых соотношениях легирующих элементов и углерода в сталях и сплавах образуются твердые карбиды и интерметаллидные включения, значительно усложняющие обрабатываемость резанием. Во-вторых, термической и термомеханической обработкой, в результате которой повышается плотность дислокаций, уменьшается величина зерна, создается вторая интерметал-лидная дисперсная фаза в матрице. Термомеханическая обработка некоторых сплавов (например, Ni—Сг—Мо) вызывает появление концентрационных неоднородностей, повышающих сопротивление деформации, нарушающих стабильность физико-механических свойств и тем затрудняющих обрабатываемость резанием.  [c.326]

Известно, что для изготовления ответственных конструкций нефтегазовой отрасли часто используются низколегированные стали. Причем присутствие легирующих элементов сложным образом оказывает влияние на температуру хладноломкости металла. Кроме того, длительная эксплуатация трубопровода может привести к снижению пластических свойств стали в связи с возможным деформационным старением и соответственно к повышению порога хладноломкости. Поэтому в работе были проведены исследования влияния отрицательных температур на физико-механические свойства трубной стали 19Г, тем-плеты которой были отобраны с действующего газопровода. Были испытаны образцы, вырезанные из труб аварийного запаса и труб после 20 лет эксплуатации на выходе из газохранилища и в пяти километрах от него.  [c.10]

Выбор оптимального состава стальной связки является сложной задачей, так как введение того или иного легирующего элемента оказывает неоднозначное влияние на износостойкость, жаростойкость, прочность, пластичность и другие свойства карбидосталей. Поэтому материаловеды стараются создать каждый новый сплав с наилучшей комбинащ1ей физико-механических свойств для специфических условий износа.  [c.113]

К составу связки предъявляется ряд требований 1) хорошее смачивание карбвд титана 2) наличие элементов, обеспечивающих раскисление сталей, не ухудшая при этом смачиваемость карбида титана. Наиболее часто в качестве легирующих элементов связки используются никель, хром и молибден, влияние которых на физико-механические свойства карбидостали представлено в та . 48 [159] ина рис. 61 [160].  [c.113]

Влияние основных компонентов на свойства порошковых сталей достаточно хорошо описано в литературе [24, 25], Однако технико-экономические факторы накладывают определенные ограничения при использовании легирующих элементов при производстве порошковых сталей. Вольфрам и ванадий являются дорогостоящими элементами и введение их в порошковую сталь экономически нецелесообразно. Учитывая их определенную ограниченность по возможности применения в массовом производстве можно отметить, что серийная технология производства порошковых сталей с использованием порошков вольфрама и ванадия экономически и технологически невыгодна. Применение порошка алюминия в смеси с железным порошком не приводит к существенному улучшению свойств спеченных сталей из-за высокого сродства алюминия к кислороду и малой растворимости алюмния в железе при температурах спекания — эти факторы отрицательно влияют на физико-механические свойства порошковых сталей.  [c.49]

Электроды с толстыми обмазками (защитные) повышают устойчивость горения дуги и защищают расплавленный металл от окисления и насыщения азотом. Наличие в покрытии раскислителей РеМп, Ре51, PeTi позволяет восстанавливать окислы металла, которые находятся на кромках изделия. При необходимости в обмазку добавляют легирующие элементы, обеспечивая получение соединения с определенными физико-механическими свойствами.  [c.462]


Исследования и опыт эксплуатации показали, что при сварке легких сплавов лучшей стойкостью обладают электроды с высокой электропроводностью и упрочняемые, как правило, холодной деформацией. Эти материалы по содержанию легирующих элементов можно разделить на две подгруппы с содержанием присадок 0,1— 0,3% и около 1%. Наиболее широкое применение в качестве высокоэлектропроводного материала для электродов точечных и шовных контактных машин нашла кадмиевая бронза, содержащая 0,9—1,2% кадмия. Ее физико-механические свойства и технологические характеристики приведены в табл. 5.  [c.28]

Нередко поверхности деталей одновременно насыщают несколькими легирующими элементами, например углеродом и азотом. Данный процесс называется цианированием. В случае насыщения поверхности хромом и алюминием процесс называется хромалитированием. Комбинированное насыщение поверхности деталей позволяет значительно улучшить физико-механические свойства сплава.  [c.161]

Существенное влияние на физико-механические свойства чугуна и стойкость изложниц оказьтает содержание основных и легирующих элементов.  [c.742]

Нормы общей степени уковки для высоколегированных сталей. При установлении этих норм необходимо учитывать особенности физико-химических и механических свойств стали. Например, известно, что в зависимости от количественного содержания в стали легирующих элементов (N1, Сг, Мо, Мп и др.) после охлаждения стали на воздухе получаются различные классы микроструктур перлитный, мао-трнситный, аустенитный, ферритный, карбидный (см. табл. 3). Отличие структуры каждого класса стали и сплавов и физико-механических свойств вызывает необходимость применения и разных степеней уковки.  [c.312]

Кроме приводимых в технических справочниках обычных характеристик материалов, необходимых конструкторам при их выборе, а также технологам-машино-строителям при проектировании технологических процессов (химический состав и основные значения механических и физико-химических свойств), в настоящем томе приведены также сведения об основных особенностях, определяющих поведение металлов при пластической деформации и термической обработке, об изменении структуры под влиянием различных факторов, о влиянии легирующих элементов и условий зксплоатации на прочность и т. п. Следует указать, что все эти данные приобретают особое значение на фоне современного развития машиностроения и повышенных требований, предъявляемых в настоящее время к производственному и особенно к энергетическому оборудованию.  [c.448]

Металлургическое производство - это область науки, техники и отрасль промышленности, охватывающая различные процессы получения металлов из руд или других материалов, а также процессы, способствующие улучшению свойств металлов и сплавов. Введение в расплав в определенных количествах легирующих элементов позволяет изменять состав и структуру сплавов, улучшать их механические свойства, получать заданные физико-химические свойства. Оно включает шахты и карьеры по добыче руд и каменных углей горно-обогатительные комбинаты, где обогащают руды, подготавливая их к плавке коксохимические заводы, где осуществляют подготовку углей, их коксование и извлечение из них полезнь[х химических продуктов энергетические цехи для получения сжатого воздуха (для дутья доменных печей), кислорода, очистки металлургических газов доменные цехи для выплавки чугуна и ферросплавов или цехи для производства железорудных металлизованных окатышей заводы для производства ферросплавов сталеплавильные цехи (конвертерные, мартеновские, электросталеплавильные) для производства стали прокатные цехи, в которых слитки стали перерабатывают в сортовой прокат балки, рельсы, прутки, проволоку, лист.  [c.25]

При дуговой сварке никеля и его сплавов пет необходимости всегда стремиться к получению металла пша, обладаюгцего таким же химическим составом и структурой, как свариваемый материал. Например, технически чистый никель не удается сварить без пор, трещип, с достаточно высокими показателями механических и коррозионных свойств шва, если его химический состав и структура будут индептичными основному металлу. Для получения сварных швов, удовлетворяющих разнообразным требованиям, часто приходится прибегать к комплексному легированию их элементами, не содержащимися в основном металле, и одновременно препятствовать обогащению шва вредными примесями. В зависимости от метода сварки никеля могут быть применены различные способы легирования металла шва. Наиболее надежно легирование электродной проволокой определенного состава в сочегашш с пассивным нелегирующим электродным покрытием, флюсом плп защитой инертным газом. При этом должны быть обеспечены условия, обеспечивающие полное усвоение сварочной ванной легирующих элементов, содержащихся в основном и присадочном металлах. Во время ручной сварки легирование шва может осуществляться через электродное покрытие, в состав которого вводятся соответствующие порошки металлов пли ферросплавов. При сварке под обычными плавлеными флюсами легирование металла шва является следствием физико-химических процессов между окислами флюса и никелем.  [c.181]


Смотреть страницы где упоминается термин Легирующие элементы — физико-механические свойства : [c.269]    [c.168]    [c.101]    [c.191]    [c.170]   
Материалы в приборостроении и автоматике (1982) -- [ c.341 , c.343 ]



ПОИСК



59-1-Механические Физико-механические свойства

Легированная Механические свойства

Легирующие элементы

Механические легированная - Механические свойств

Физико-механические свойств

Физико-механические свойства свойства

Элементы Свойства



© 2025 Mash-xxl.info Реклама на сайте