Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Чугун Физико-механические свойства

Свойства белого чугуна Физико-механические свойства белого чугуна приведены в табл. 22.  [c.201]

В зависимости от условий эксплуатации конструкционные порошковые материалы (КПМ) подразделяют на две группы материалы, заменяющие обычные углеродистые и легированные стали, чугуны и цветные металлы материалы со специальными свойствами — износостойкие, инструментальные, жаропрочные, жаростойкие, коррозионностойкие, для атомной энергетики, с особыми физическими свойствами (магнитными, электро- и теплофизическими и др.), тяжелые сплавы, материалы для узлов трения — антифрикционные и фрикционные и др. Физико-механические свойства КПМ при прочих равных условиях определяются плотностью (или пористостью) изделий, а также условиями их получения. По степени нагруженности порошковые детали подразделяют на четыре группы (табл. 7.1).  [c.174]


Теневой метод применяют в основном для контроля листов малой и средней толщины, изделий из материалов с большим рассеянием УЗК (покрышек колес). При особенно большом рассеянии используют временной теневой метод (контроль бетона, огнеупоров). Условием его применения является двусторонний доступ к изделию. В случае, когда это условие не выполняется, может быть использован зеркально-теневой метод (например, для контроля железнодорожных рельсов). Теневой эхо-метод и сквозной эхо-метод применяют для повышения чувствительности теневого метода к мелким дефектам. Различные варианты методов прохождения применяют для контроля физико-механических свойств бетона, чугуна, стеклопластиков, древесностружечных плит, технических тканей и т. д.  [c.203]

Настоящая работа посвящена исследованию диффузионных титановых покрытий на чугуне и меди, наносимых с целью повышения износостойкости в агрессивных средах и более широкого применения их в промышленности. За последние годы наблюдается тенденция применения диффузионных вакуумных покрытий поверхности деталей с целью повышения физико-механических свойств материала, из которого они изготовлены [1—4].  [c.71]

Большим достижением советских литейщиков в последующие годы явилась разработка технологии и промышленное внедрение высокопрочного чугуна с шаровидным графитом, получаемого путем модифицирования его церием. Такой чугун по физико-механическим свойствам в ряде случаев успешно заменяет сталь и ковкий чугун и является весьма ценным материалом для изготовления массивных литых деталей прокатных валков, крупных коленчатых валов, станин для мощных прессов и проч.  [c.97]

Упрочнение пластическим деформированием поверхностного слоя (наклепом), повышение физико - механических свойств поверхностного слоя, изменение величины и знака остаточных напряжений в поверхностном слое, улучшение микрогеометрии обработкой поверхности Вибрационная галтовка Чугун, сталь, сплавы из цветных металлов и на основе титана Сохраняется от предшествующей обработки 10-12-й Увеличивается на 10-15% Напряжения сжатия 10-15 0,05 0,2  [c.286]

Физико-механические свойства чугуна зависят не только от его химического состава, но в значительной степени определяются и его структурой, скоростью заливки форм и охлаждения отливок кроме того, они меняются при изменении раз-метров деталей.  [c.181]

МАТЕРИАЛЫ В МАШИНОСТРОЕНИИ 8. Физико-механические свойства чугунов  [c.150]


Физико-механические свойства чугуна типа нирезист приведены в табл. 65, а в сравнении со свойствами других металлов — в табл. 66.  [c.55]

Сравнительные показатели физико-механических свойств чугуна типа нирезист (33  [c.56]

Основные физико-механические свойства белого чугуна приведены в табл. 70.  [c.59]

ФизикО Механические свойства белого чугуна  [c.59]

Зависимость физико-механических свойств материала из чугунной стружки от пористости (30)  [c.257]

Влияние химического свойства на структуру и физико-механические свойства серого чугуна. Влияние основных элементов на графитизацию чугуна может быть оценено с помощью данных табл. 25.  [c.83]

Области применения. Ковкий чугун как конструкционный материал широко применяют в различных отраслях машиностроения благодаря высоким физико-механическим свойствам отливок, несложной и стабильной технологии их производства и более низкой стоимости по сравнению с отливками из стали, поковками и штамповками. Основным потребителем отливок из ковкого чугуна является автомобиле-и тракторостроение, сельхозмашиностроение и другие отрасли промышленности (табл. 27).  [c.133]

Этот тип чугуна более известен как коррозионно-стойкий, и подробные данные о химическом составе, физико-механических свойствах приведены на стр. 204.  [c.173]

Механические свойства чугуна при повышенных температурах. Чугунные отливки, работающие при повышенных температурах, особенно при повторно-переменном воздействии их, теряют прочность и твердость, а кроме того подвержены сильному окислению и росту. Следствием роста чугуна является ухудшение его физико-механических свойств.  [c.13]

Обрабатываемость чугунов зависит от многих факторов. Основными из них являются химический состав, структура, физико-механические свойства.  [c.26]

В зависимости от физико-механических свойств чугуны можно разделить по твердости на четыре группы 1) мягкие (НБ < 149)  [c.6]

Чугун (5). Условное обозначение марок чугуна (6). Механические свойства отливок из серого чугуна (7). Примерное назначение отливок из серого чугуна (8). Механические свойства отливок из ковкого чугуна (9). Примерное назначение отливок из ковкого чугуна (10). Сравнительные показатели механических свойств ковкого чугуна и других машиностроительных материалов (10). Марки антифрикционного чугуна в зависимости от формы включения графита (11). Примерное назначение и предельные режимы работы литых деталей пз антифрикционного чугуна (11). Механические свойства отливок из высокопрочного чугуна (12). Примерное назначение отливок из высокопрочного чугуна (13). Механические свойства отливок из жаростойкого чугуна (13). Примерное назначение отливок из жаростойкого чугуна (14). Физико-механические свойства отливок из кислотостойкого чугуна (15). Примерное назначение отливок из кислотостойкого чугуна (15).  [c.536]

Распад эвтектического, цементита при нагревании сопровождается ростом (увеличением объема) чугуна, что недопустимо для массивных корпусных деталей, так как приводит к ухудшению физико-механических свойств деталей.  [c.105]

Приведенные выше рекомендации по составу и технологии изготовления кислой огнеупорной футеровки внедрены на Каунасском чугунолитейном заводе Центролит при выплавке синтетического чугуна в индукционных пе чах промышленной частоты емкостью 6—8 т Физико-механические свойства и стойкость производственных футе ровок приведены в табл 10 Количество выплавленного в печах металла за кампанию при двухсменной работе достигает 1000 т и зависит от пористости (а) и прочности (б) футеровки (рис 21) Тигли заменяются в среднем че рез 30 рабочих дней, расход футеровочной массы состав ляет 2—2,5 /сг/г  [c.43]

Для изготовления режущих инструментов применяют также режущую керамику (кермет) марок ВЗ ВОК-60 ВОК-63, представляющую собой оксидно-карбидное соединение (окись алюминия с добавкой 30...40% карбидов вольфрама и молибдена). Введение в состав минералокерамики карбидов металлов (а иногда и чистых металлов — молибдена, хрома) улучшает ее физико-механические свойства (в частности, снижает хрупкость) и повышает производительность обработки в результате повышения скорости резания. Получистовая и чистовая обработка инструментом из кермета деталей из серых, ковких чугунов, труднообрабатываемых сталей, некоторых цветных металлов и сплавов производится со скоростью резания 435... 1000 м/мин без подачи СОЖ в зону реза-  [c.37]


Для деталей из чугуна параметры шероховатости Ra, Rz можно принимать в 1,5 раза большими табличных 3. Характеристики физико-механических свойств для деталей из чугуна следует принимать в 1,5 раза меньшими табличных.  [c.309]

Выбор СОТС в каждом конкретном случае зависит от технологического метода и режима обработки, а также физико-механических свойств обрабатываемого и инструментального материала. При черновой и получистовой обработках, когда требуется эффективное охлаждающее действие среды, применяют водные растворы электролитов и поверхностно-активных веществ, масляные эмульсии. При чистовой обработке применяют чистые и активированные минеральные масла. Под влиянием высоких температур и давлений эти вещества образуют на поверхности заготовок соединения (фосфиды, хлориды, сульфиды), снижающие трение. При обработке хрупких материалов (чугун, бронза) твердосплавным инструментом в качестве СОТС используют газы (сжатый воздух, углекислый газ).  [c.459]

К материалу ответственных литых деталей современных машин, работающих в условиях циклических нагрузок, предъявляются высокие требования. Уровень физико-механических свойств серых чугунов с пластинчатым графитом (ЧПГ) оказывается в ряде случаев недостаточным, что приводит к преждевременным поломкам деталей в процессе их эксплуатации или требует увеличения толщины стенок, а следовательно, и массы отливок.  [c.157]

Физико-механические свойства чугуна с вермикулярным графитом  [c.416]

Обрабатываемость резанием чугунов зависит от многих факторов, и, в первую очередь, от химического состава, структуры и физико-механических свойств.  [c.431]

Чугунные отливки, работающие при повышенных температурах,, особенно при повторно-переменном их воздействии, подвержены окис- лению, росту, у них могут ухудшаться- физико-механические свойства.  [c.373]

Физико-механические свойства железокремнистого спла и серого чугуна  [c.240]

В зависимости от назначения ультразвуковые приборы, как и другие приборы неразрушающего контроля, подразделяются на дефектоскопы для поиска и обнаружения дефектов, толщиномеры для измерения толщины стенок при одностороннем доступе к изделию или измерения толщины покрытий и слоев, анализаторы физико-механических свойств материала, служащие для измер)сния величины зерна, графитовых включений в чугунах, напряженного состояния объекта, упругих харс1ктеристик материала и остальных свойств, которые зависят от скорости прохождения ультразвука.  [c.179]

Упрочнение поверхностной термической обработкой, изменение физико-механических свойств и структуры поверхностного слоя, изменение величины и знака остаточных напряжении Закалха с нагревом газовым пламенем Сталь, чугун Коробление на 0,03—0,1 мм Снижается на один класс HR 40-70 Напряжения сжатия 30-80 0,5 10,0  [c.287]

Анализ пол ученных результатов показывает, что в зависимости от содержания хрома износостойкие белые чугуны могут быть разделены на чешре группы сплавов, отл ичающйеся строением. и служебными свойствами. К первой группе можно отнести сплавы, содержащие 1—6% Сг, ко второй — сплавы, содержащие 10— 15% Ст, к третьей группе — сплавы, содержащие 17—23% Сг, а к четвертой — сплавы с 25—30% Сг. Предложенная классификация износостойких хромистых чугунов основана на зависимости физико-механических Свойств от морфологии и структурного сьстава карбидной фазы, а также фазового состава металлической основы сплавов.  [c.30]

Модифицирование (инокуляция) чугуна. Модифицирование обычно заключается в придании чугуну необходимой степени графи,-тизации введением в него соответствующих веществ (модификаторов) перед его затвердеванием. Измельчённые модификаторы, чаще всего силикокальций, высокопроцентный ферросилиций, силикоалюминий, графит, присаживают к жидкому металлу (в струю из жёлобе или в ковш) в количестве 0,2—0,5 Уо от его веса. Такие присадки приводят к значительным изменениям в физико-механических свойствах чугуна. Применяются также и стабилизирующие модификаторы, в состав которых входят как графитизирующие, так и карбидообразующие элементы.  [c.180]

Твердые сплавы применяются для изготовления режущих инструментон, предназначенных для обработки металлов с высокими скоростями резания (от 100 до 1200 м/мин). Твердые сплавы вольфрамовой группы применяются для обработки хрупких металлов, например чугуна, бронзы, закаленной на = 55 64 стали. Твердые сплавы вольфрамотнтановой группы применяются дли обработки стали. Оснок-ные физико-механические свойства твердых сплавов приведены в табл. 4, примерное назначение марок твердого сплава см. т. 6, гл. VII. Пластинки твердого сплава выпускаются различной формы и размерен. Сорт. мент пластинок установлен ГОСТ 2209-55 (табл. 5). Технические условия на пластинки твердого сплава для режущих инструментов по металлу стандартизованы ГОСТ 4872-52.  [c.280]

Температура плавления электролитического хрома очень высока и достигает 1830° С. В литературе указываются и другие значения температуры плавлепия электролитического хрома (в частности 1620 и 1550° С). По-видимому, температура плавления, так же как и другие физико-механические свойства электролитического хрома, зависит от условий электролиза. В среднем можно считать, что температура плавления хрома превышает температуру плавления чугуна на 25—30% и стали на 15—20%.  [c.84]

Специальное модифицирование в процессе трения с целью получения вторичных структур с заданными физико-механическими свойствами. В качестве примера показана зависимость износа чугуна ЧНМХ по ФМК-8 при испытании в среде воздуха, азота и аммиака в условиях работы тормозных устройств (рис. 4). Модифицирование молекулярным и диссоциировавшимся азотом значительно расширяет диапазон нормального трения.  [c.37]


Для более детального изучения этого вопроса были исследованы различные по химическому составу и физико-механическим свойствам металлы как в состоянии поставки, так и после их химикотермической обработки технически чистый титан ВТ1-0, хромистая нержавеющая сталь 4X13 и серый чугун СЧ18-36.  [c.124]

Газосодержание при плавлении шихты и термовременной обработке чугуна По данным многочисленных ис следований, растворенные в чугунах газы существенно влияют на его физико механические свойства Заметим, что концентрация газов в жидком металле изменяется в  [c.95]

Параметры жидкого состояния сплава являются од ним из решающих факторов кристаллизации графита в шаровидной форме В синтетическом чугуне можно по лучить шаровидный графит без применения сфероидизи руюш,их добавок В результате плавки металла под наводимыми в печи основными и нейтральными шлаками при определенных температурах и интенсивности элек тромагнитного перемешивания жидкий чугун приобретает физико механические свойства, необходимые для образования в нем шаровидного графита высокое значение величины поверхностного (межфазного) натяжения, низкий уровень газонасыщенности и достаточную степень переохлаждения при последующей кристаллизации в форме Шлаковым режимом можно регулировать также характер металлической основы чугуна в литом состоя НИИ (преобладание в ней ферритной или перлитной со ставляющей) [48]  [c.151]

Предлагаемая книга посвящена проблеме термической усталосте, т.е процессу появления поверхностных трещин и их постеленного развития вплоть до полного разрушения изделий, работающих в условиях циклических нагревов и охлаждений, сопровождающихся созданием больших градиентов температур по сечению детали. На основе обобщения литературных сведений, данных эксплуатации разнообразногб технологического и энергетического оборудования в ПНР, а также используя собственные производственные и лабораторные исследования, автор сделал попытку установить общие закономерности влияния многочисленных факторов (условий службы, химического состава, структуры и физико-механических свойств материалов) на српротивлен термической усталости конкретных изделий (стальных форм для литья чугунных труб, инструмента горячей и холодной штамповки, прокатных валков, деталей термического оборудования, роторов турбин и др.). При этом приведены практические рекомендации по выбору материалов, термической, химико-терми-ческой и других видов обработки с целью повышения сопротивления усталости изделий, работающих в условиях циклических термических нагрузок. Дано также описание основных методов исследования структуры и свойств материалов при термической усталости.  [c.6]

Физико-механические свойства чугуна с вер-микулярным графитом приведены в табл. 7.8.  [c.416]


Смотреть страницы где упоминается термин Чугун Физико-механические свойства : [c.91]    [c.128]    [c.235]    [c.437]    [c.165]   
Справочник машиностроителя Том 2 (1952) -- [ c.201 ]



ПОИСК



10 Указатель из чугунной стружки - Физико-механические свойства

59-1-Механические Физико-механические свойства

Отливки из марганцовистой стали чугунные со специальными физико-механическими свойствами

Способы повышения физико-механических и эксплуатационных свойств чугуна в литом состоянии

Физико-механические свойств

Физико-механические свойства Сталей и чугунов

Физико-механические свойства свойства

Чугун Механические свойства

Чугун Свойства физико-механические 150, 151 — Свойства

Чугуны Свойства



© 2025 Mash-xxl.info Реклама на сайте