Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическое число Рейнольдса

Введем так называемое электрическое число Рейнольдса Ве/  [c.78]

Кос — электрическое число Рейнольдса  [c.12]

Здесь Ке° - электрическое число Рейнольдса, пропорциональное характерной скорости газа. При достаточно малых Ке° функцию С можно представить рядом С = г/1(Р ) + г/2( )Ке° +. .. и из (3.3) получить выражение  [c.641]

Аналогичная зависимость имеет место при течении тонких слоев при различных физических воздействиях, в частности электрических нолей большой интенсивности рис. 1.6 [18]. Из всего многообразия экспериментальных данных на рис. 1.6 представлены те значения параметров пленки (число Рейнольдса и напряженности электрического поля), при которых наблюдается самоорганизация.  [c.15]


Особенностью электромагнитной объемной силы является то, что в отличие от других объемных сил (силы тяжести, инерционных сил) ею можно управлять, воздействуя на вызывающие ее. электрическое и магнитное поля. Изменяя величину электромагнитной силы, можно влиять на интенсивность и форму ударных волн, увеличивать критическое значение числа Рейнольдса при переходе ламинарного режима течения в турбулентный, замедлять пли ускорять поток электропроводной жидкости (или газа), вызвать деформацию профиля скорости п отрыв пограничного слоя.  [c.178]

Ослабление интенсификации теплообмена, которое наблюдалось с увеличением числа Рейнольдса, легко объяснимо, поскольку при этом обычная турбулентность имеет тенденцию подавлять эффекты, связанные с наличием электрического поля. Эта тенденция наблюдалась и всеми другими исследователями.  [c.434]

При приложении переменного электрического поля интенсификации теплообмена не наблюдается даже при очень небольших числах Рейнольдса и при частотах, близких к частоте акустического резонанса для теплообменной трубы. Этот вывод основан на опытах, проведенных на установках с двумя различными резонансными частотами.  [c.449]

ЗАКОН [периодический Менделеева свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов Планка описывает мощность излучения черного тела как функцию температуры и длины волны подобия Рейнольдса коэффициенты, необходимые для вычисления гидравлического сопротивления геометрически подобных тел, равны, если равны соответствующие числа Рейнольдса в этом случае оба потока подобны полного тока <для токов проводимости циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром для магнетиков циркуляция вектора магнитной индукции вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром обобщенный циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром и током смещения ) постоянства <гранных углов в кристаллографии по величине двугранных углов в кристалле можно установить, к какой кристаллической системе и к какому классу относится данный кристалл состава каждое химическое соединение, независимо от способа его получения, имеет определенный состав ) преломления (света отношение синусов углов падения и преломления на границе двух сред равно отношению скоростей света в этих средах Снеллиуса отношение синусов углов падения и преломления луча электромагнитных волн на границе раздела двух диэлектрических сред равно относительному показателю преломления двух сред (второй среды по отношению к первой) )  [c.235]


Для расчета одномерного течения проводящей среды при малых магнитных числах Рейнольдса необходимо знать форму канала и распределение напряженностей электрического и магнитного полей. К настоящему времени имеется большое число работ, посвященных рассмотрению разных частных примеров. Однако при исследовании течения в канале магнитогидродинамического генератора больший интерес представляют задачи, в которых форма канала и электромагнитное поле выбираются так, чтобы обеспечить экстремум определенных характеристик, например, максимум снимаемой мощности, минимум потерь и т.п. Настоящая работа посвящена решению этих задач с использованием методом вариационного исчисления. Решение иллюстрируется примерами.  [c.596]

С технической точки зрения наиболее важным случаем является теплообмен между жидкостью и круглым цилиндром, обтекаемым перпендикулярно к его оси. В практических условиях такой случай имеет место при обтекании потоком жидкости проволоки, нагреваемой электрическим током (термоанемометр), или трубы, в которой движется другая жидкость с иной температурой (отопительные трубы, радиаторы). В широкой области значений числа Рейнольдса, примерно  [c.541]

Качественное исследование системы дифференциальных уравнений, описывающих квазиодномерное установившееся течение электропроводной среды при малых магнитных числах Рейнольдса, дает представление о возможных режимах течения, реализующихся при различном задании электромагнитного поля и формы канала. Такое рассмотрение необходимо для расчета одномерных течений, а также при решении вариационных задач 1]. В литературе, посвященной этому вопросу, изучались течения в однородном электромагнитном поле и канале постоянного сечения [2], а также течения нри специально заданных зависимостях магнитного поля от скорости течения [3]. Эти случаи сводились к анализу интегральных кривых на плоскости. Исследование проводится для произвольного распределения электрического и магнитного полей и формы канала, что приводит к рассмотрению поведения интегральных кривых в пространстве. Качественные результаты иллюстрируются примерами.  [c.67]

Все параметры в выражениях (12) и (13) соответствуют сечению отрыва пограничного слоя является параметром отрыва ламинарного магнитогидродинамического пограничного слоя Q - критерий, характеризующий действие электромагнитной силы, пропорциональной напряженностям электрического и магнитного полей параметр (квадрат числа Гартмана) характеризует магнитогидродинамическую силу, обусловленную взаимодействием движущегося газа с магнитным полем и отличную от нуля при = 0 число Рейнольдса вдува. Указанные параметры определены по характерному поперечному размеру пограничного слоя 2 . В зависимости от конкретизации размера 2 будут меняться значения величин  [c.547]

Пропановый факел при отрицательной полярности горелки. Основные эксперименты проведены на пропановой горелке с диаметром d = 0.S мм. Объемный расход пропана через горелку составлял 1 см / с и не изменялся в процессе экспериментов с электрическим полем. Скорость газа на срезе горелки г о = 2 м/с. Числа Рейнольдса и Фруда составляли Re = v d/щ = 120, Fr = v Kgd) = 500, где z/q коэффициент кинематической вязкости окружающего воздуха, д - ускорение силы тяжести. Согласно приведенным данным, экспериментально изучаемый факел представляет собой затопленный факел с сильным проявлением сил плавучести. Экспериментальная (видимая) длина факела при отсутствии электрического поля Е составляет б см, что в первом приближении согласуется с полуэмпирическими данны-  [c.704]

В задачах о течениях в канале МГД-генератора Re поэтому в этих задачах естественно пренебрегать индуцированными магнитными полями. При этом магнитное поле в области течения можно считать заданным и безвихревым, а электрические токи находить из закона Ома. Анализ возможных упрощений широкого класса задач на основе предположения о малости магнитного числа Рейнольдса дан С. И. Брагинским (1959).  [c.446]


Первая модель электрической дуги в турбулентном потоке газа имеет место, когда на входе в дуговой канал плазмообразующий газ имеет ламинарное течение, а в канале — турбулентное, что соответствует большим числам Рейнольдса, вычисленным по параметрам холодного газа. Данный режим работы плазмотрона достаточно подробно исследован в работе [30]. Было установлено, что на начальном участке течения газа /, граница которого определяется встречей теплового слоя 2 и турбулентного пограничного слоя 3, возникающего при взаимодействии плазмообразующего газа со стенкой дугового канала (рис. 71), дуга горит в ламинарном потоке газа. В конце входного участка дуги после начального участка течения газа происходит разрушение ламинарного теплового слоя дуги и далее идет формирование турбулентного теплового слоя дуги 4, которое завершается при взаимодействии его с проводящей областью дуги. Затем начинается постепенный переход к установившемуся турбулентному течению газа. В целом участок II можно считать переходным, так как здесь происходит  [c.131]

Плазменный поток на срезе сопла плазмотрона имеет ламинарный, турбулентный или смешанный характер в зависимости от числа Рейнольдса. В работах [33, 78] определены границы областей существования ламинарных и турбулентных режимов течения на срезе сопла дугового плазмотрона в зависимости от числа Рейнольдса, определяемого через расход газа G, диаметр сопла и коэффициент вязкости, соответствующий средней температуре потока, вычисляемой из энергетического баланса плазмотрона. По данным [33], при Re < ИОн-250 плазменный поток на срезе сопла ламинарный, при Re > 300- 800 — турбулентный, а в промежуточной области чисел Re режим течения переходной. В работе [78] ламинарным поток считается при Re < 630, а турбулентным — при Re > 850. В промежуточной области, как и ранее, течение является переходным. Помимо этого, на ламинарность и турбулентность течения существенно влияет режим горения электрической дуги или иного разряда. Так, в дуговых плазмотронах при малой длине дуги (/д =< 0,5 см) в дуговом канале  [c.147]

Режим стохастической модуляции может возникнуть в автономной волновой системе в результате развития собственной неустойчивости. Примером такой системы может служить лампа обратной волны. В этом электронном генераторе наблюдался [17] переход к режиму колебаний со стохастической модуляцией. Блок-схема генератора показана на рис. 23.6. Электронный пучок движется сквозь замедляющую систему, вдоль которой распространяются волны с продольным электрическим полем. Параметры системы таковы, что фазовая скорость этих волп на некоторой частоте совпадает со скоростью пучка ф(Г2) к, а групповая скорость направлена в обратную сторону. Выходной сигнал снимается с того же конца замедляющей системы, куда поступает пучок. Тогда при взаимодействии волновых возмущений частоты ш к, I и с электронным потоком реализуется распределенная обратная связь и возникает абсолютная неустойчивость, приводящая к стационарному режиму генерации (см. гл. 7). Характер этого режима определяется только одним параметром, подобным числу Рейнольдса для гидродинамического течения Ы = (31 1К , где 3 — волновое число волны, синхронной с потоком, I — длина взаимодействия, I — постоянная составляющая тока пучка, и — ускоряющее напряжение, К — параметр системы с размерностью сопротивления. Последовательность бифуркаций, наблюдаемых в этой системе по пути к режиму стохастической модуляции (при увеличении параметра ), представлена на рис. 23.7. При возникает стохастический режим, характеризуемый сплошным спектром.  [c.504]

Это число безразмерное и полностью аналогично по своему характеру и применению числу Рейнольдса из гидромеханики. В частности, если Кт 1, то вынужденный перенос силовых магнитных линий преобладает над их диффузией и электрическое сопротивление проводника пренебрежимо мало. Это же относится и к слагаемому с джоулевой диссипацией в уравнении (5.2.26), так что соотношения (5.2.25) и (5.2.26) для идеальных проводников преобразуются (в безразмерной форме) к виду  [c.272]

В последние годы ведутся интенсивные экспериментальные и теоретические исследования, связанные с воздействием плазмы на потоки, обтекающие тело [1]. Релаксационные процессы перекачки энергии возбужденных электрическим разрядом молекул в поступательные степени свободы значительно влияют на лобовое сопротивление обтекаемого тела и структуру головной ударной волны уже при числах Маха порядка единицы [2]. Релаксационные процессы в среде, увеличивая коэффициент второй (объемной) вязкости, могут существенно влиять на известную энергетическую оценку границы гидродинамической устойчивости [3] даже при малых числах Маха. Положительная вторая вязкость приводит к увеличению критического числа Рейнольдса а отрицательная - к его понижению [4].  [c.82]

Электрическое число Рейнольдса и числа электровязкости находятся для по.ля множества зараженных частиц. Длн заданной характеристики электрического поля Ед они принимают следующий вид  [c.494]


Простейшее решение уравнения одномерного течения идеального газа в скрещенных электрическом и магнитном полях получается для канала постоянного сечения при В = onst и Е = = onst последние два условия можно реализовать лишь при малых значениях магнитного числа Рейнольдса (Rh<1), когда индуцируемые в потоке газа поля значительно слабее наложенных полей ).  [c.242]

В работе [52] приведены опыты Роми по теплообмену в цилиндрическом канале с внутренним диаметром 25,4 мм, толщиной стенки 0,25 мм и длиной 685 мм при среднем значении числа Рейнольдса Reo = 5000, что соответствовало переходному режиму течения. В качестве теплоносителя использовался воздух. Обогрев экспериментального участка осуществлялся посредством переменного электрического тока, пропускаемого непосредственно по трубе. Возмущения колебания скорости теплоносителя генерировались посредством вращающегося золотника, установленного на входе в экспериментальный участок. Настройка экспериментальной установки на резонансные колебания осуществлялась изменением длины экспериментального участка и изменением объема воздушной емкости, включенной в систему подачи воздуха. Частота и относительная амплитуда колебания скорости воздуха соответственно изменялись в пределах 37—134 Гц, =  [c.137]

Опытные данные по эффективному коэффициенту диффузии АГд, представленные в разд. 5.2, относятся к пучку витых труб с числом = 220 и были получены при резком уменьшении мощности тепловой нагрузки от номинального значения до нуля. При этом максимальное значение производной мощности по времени составляло (ЭЛ /Эт) = 7,5 -10 кВт/с, а выявленное уменьшение коэффициента по сравнению с его квазистационарным значением в первые моменты времени по характеру было аналогично изменению коэффициента теплоотдачи в круглых трубах для такого же типа нестационар-ности. В данном разделе ранее представленные результаты сопоставляются с экспериментальными результатами по коэффициенту А д, полученными для пучков с числом = 57 при небольших темпах выхода на режим (Э.Л /9г) = 1,075. ... .. 1,875. Уменьшение темпов охлаждения стенки (уменьшение производной мощности тепловой нагрузки по времени) в этой серии экспериментов удалось обеспечить путем ступенчатого охлаждения, т.е. перехода с одного режима работы пучка витых труб на другой режим с меньшей мощностью тепловой нагрузки (рис. 5.20). Кроме того, работа теплообменных устройств в условиях перехода с одного на другой режим работы представляет и самостоятельный интерес. На рис. 5.20 представлено изменение во времени мощности тепловой нагрузки для режимов работы пучка с числами Рейнольдса Ее = 1,25 10 , 8,9 10 , 5,1 10 , а также изменение температуры теплоносителя для числа Ее = 1,25 10 в характерных точках ядра потока с теми же координатами, что и в случае пучка витых труб с Рг = 220 (разд. 5.2), при неравномерном поле теплЬвыде-ления в поперечном сечении пучка (подводе электрической мощности к центральным 37 трубам из 127). Видно, что если мощность нагрева стабилизируется примерно за 1 6 с, то температура теплоносителя выходит на новый стационарный уровень в каждой точке потока практически при г = 60. .. 76 с. 170  [c.170]

Если напряженность электрического поля возрастает (при постоянном небольшом числе Рейнольдса), то пптенсификация теплоотдачи сначала возрастает до максимума, а затем убывает практически до нуля. Такое явление можно качественно объяснить с помощью предлагаемого механизма — электрического ветра (см. следующий пункт), но оно находится в прямом противоречии с моделялми, предло кенными предшествующими исследователями [4).  [c.448]

Отчетливо видные на рис. 7 нерегулярные колебания представляют собой довольно грубую турбулентность. Это также заметно в верхнем конце плиты на обеих фотографиях с дымом. Чтобы проследить дальней-щее развитие пограничного слоя в направлении потока, в сосуде диаметром 1 м и высотой 2 м, наполненном газообразным фреоном (дихлорди-фторметаном) под давлением 3,2 ат, была вертикально подвешена плита высотой 915 мм и шириной 185 мм. Плита обогревалась электрическим током. Пограничный слой, образовавшийся на поверхности плиты, визуально исследовался с помощью интерферометра. Использование фреона позволило повысить примерно на 20% число Грасгофа, которое по аналогии с числом Рейнольдса в вынужденном потоке является определяющим критерием при свободной конвекции. Для сохранения свободной конвекции сосуд оказался слишком малым, в связи с чем электрический обогрев включался только на короткое время. Тем не менее удалось установить, что процесс развития турбулентности происходит так же, как и в воздухе. На рис. 10 и И даны две интерференционные фотографии верхнего края пластины. Рис. 10 сделан с помощью той Ае интерференционной установки, что и для воздуха. Для получения фото, изображенного на рис. 11, стеклянная пластина интерферометра была установлена та-  [c.355]

Соджин и др. [9 провели измерения теплоотдачи на передней и задней поверхностях электрически нагреваемой (до 93° С) пластины, перпендикулярной направлению потока в аэродинамической трубе при нормальных атмосферных условиях. Хорда пластины была равна 171 мм, а отношение площади пластины к площади рабочего сечения трубы составляло 0,211. Число Рейнольдса заключено в пределах от 100 ООО до 450 ООО.  [c.95]

Производились измерения давления на стенке. Полное давление в потоке измерялось микронасадком, непрерывно перемещающемся по нормали к образующей. Сигнал давления преобразовывался малоинерционным индуктивным датчиком в электрический сигнал, фикси-эуемый на осциллографе. Тенлеровская картина обтекания фотографировалась. Экспериментальные исследования проводились при числе Маха невозмущенного потока М = 6. Число Рейнольдса, определенное по параметрам в невозмущенном потоке, изменялось в диапазоне К = 0.5 10 -г 2.5 10 . В качестве характерного размера принималась длина образующей конуса до точки сопряжения (100 мм). Для исследуемых моделей такой диапазон изменения чисел Рейнольдса соответствовал режимам перехода ламинарного течения в турбулентное либо в пределах зоны отрыва, либо вверх по потоку от точки отрыва. Режим течения в пограничном слое контролировался по коэффициенту восстановления температуры поверхности.  [c.162]

Привлекательность использования МГД эффектов для управления газодинамическим течением связана с возможностью целенаправленно изменять величину и направление МГД силы воздействием на поток магнитного и электрического полей. Однако при этом происходит перестройка всего течения, возникают зоны с большим положительным градиентом давления на стенках канала и отрыв пограничного слоя. Поэтому в 1960-70-х гг. исследование МГД пограничных слоев стало актуальной задачей. В ЛАБОРАТОРИИ получены основополагающие результаты в указанном направлении. А. Б. Ватажиным ([21 и Глава 12.2) рассмотрено течение в плоском диффузоре при наличии магнитного поля, создаваемого током, протекающим в вершине диффузора перпендикулярно плоскости течения. Диффузорное течение несжимаемой жидкости характеризуется наличием положительного градиента давления, приводящего при достаточно больших числах Рейнольдса или углах раскрытия диффузора к возникновению обратного гидродинамического течения. Магнитное поле позволяет предотвращать развитие таких течений.  [c.518]


Турбулентная паровоздушная струя с отрицательным коронным разрядом (рис. 1, а). Дозвуковая турбулентная паровоздуп1ная струя создавалась в результате истечения водяного пара из сопла диаметром 0.28 сж в затопленное воздушное пространство с давлением р = = 980 мбар [3, б, 7]. Параметры на срезе сопла (температура То = = 380-630 К, скорость пара = 200-300 ж/с) обеспечивали режимы течения с разным пересыщением пара. В струе имелись классические начальный, переходный и основной участки течения (на срезе сопла число Рейнольдса Ке 2 10 ). В струю, в разных ее сечениях, вводилась коронирующая игла 1 - электрод отрицательного коронного разряда. Выбирались такие условия на срезе сопла, при которых в отсутствие коронного разряда конденсация протекала вяло или вообще отсутствовала, но при введении отрицательных ионов конденсация на них могла развиваться. Такая электрическая конденсация в струях подробно описана в [7.  [c.716]


Смотреть страницы где упоминается термин Электрическое число Рейнольдса : [c.491]    [c.497]    [c.533]    [c.659]    [c.404]    [c.447]    [c.288]    [c.136]    [c.164]    [c.432]    [c.437]    [c.443]    [c.228]    [c.24]    [c.272]    [c.450]    [c.131]    [c.160]    [c.66]    [c.80]   
Гидродинамика многофазных систем (1971) -- [ c.491 ]



ПОИСК



Рейнольдс

Число Рейнольдса

Число Рейнольдса си. Рейнольдса число



© 2025 Mash-xxl.info Реклама на сайте