Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазмообразующий газ

Плазменная струя, применяемая для сварки, представляет собой направленный поток частично или полностью ионизированного газа, имеющего температуру 10 ООО—20 ООО °С. Плазму получают в плазменных горелках, пропуская газ через столб сжатой дуги. Дуга горит в узком канале сопла горелки, через который продувают газ. При этом столб дуги сжимается, что приводит к повышению в нем плотности энергии и температуры. Газ, проходящий через столб дуги, нагревается, ионизируется и выходит из сопла в виде высокотемпературной плазменной струи. В качестве плазмообразующих газов применяют азот, аргон, водород, гелий, воздух и их смеси. Газ выбирают в зависимости от процесса обработки и вида обрабатываемого материала.  [c.198]


Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом — разрезаемым металлом и катодом — плазменной горелкой. Стабилизация и сжатие токового канала дуги, повышающее ее температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующих газов (Аг, N2, Hj, NHJ и их смесей. Для интенсификации резки металлов используется химически активная плазма. Например, при резке струей плазмы, кислород, окисляя металл, дает дополнительный энергетический вклад в процесс резки. Плазменная дуга режет коррозионно-стойкие и хромоникелевые стали, медь, алюминий и другие металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять ее в поточных непрерывных производственных процессах. Нанесение покрытий (напыление) производятся для защиты деталей, работающих при высоких температурах, в агрессивных средах или подвергающихся интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка (или проволоки) в плазменную струю, в которой он плавится, распыляется со скоростью - 100—200 м/с в виде мелких частиц (20— 100 мкм) на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам.  [c.291]

Использование в качестве плазмообразующего газа продуктов сгорания углеводородных топлив в воздухе требует детального исследования с целью изучения влияния углерода, азота и их оксидов на обрабатываемые или напыляемые материалы.  [c.356]

Плазма генерируется в канале сопла, обжимается и стабилизируется его водоохлаждаемыми стенками и холодным плазмообразующим газом. Обжатие и охлаждение наружной поверхности  [c.12]

Сжатой дугой можно сваривать практически все металлы в нижнем и вертикальном положениях. В качестве плазмообразующего газа используют аргон и гелий, которые также могут быть и защитными. К преимуществам плазменной сварки относятся высокая производительность, малая чувствительность к колебаниям длины дуги, устранение включений вольфрама в металле шва. Без скоса кромок можно сваривать металл толщиной до 15 мм с образованием провара специфической грибовидной формы, что объясняется образованием сквозного отверстия в основном металле, через которое плазменная струя выходит на обратную сторону изделия. По существу, процесс представляет собой прорезание изделия с заваркой места резки. Плазменной струей сваривают стыковые и угловые швы. Стыковые соединения на металле толщиной до 2 мм можно сваривать с отбортовкой кромок, при толщине свыше 10 мм рекомендуется делать скос кромок. В случае необходимости используют дополнительный металл.  [c.85]


Иногда газы разделяют на плазмообразующие и защитные (транспортирующие). При раздельной подаче плазмообразующий газ подается в зону катода, а защитные или транспортирующие газы — в зону столба или факела плазмы.  [c.104]

Следует отметить, что часто проводимое в литературе сравнение удельного массового теплосодержания плазмы разного состава не позволяет делать количественных выводов. Сравнение нужно проводить по мольному или объемному теплосодержанию, так как расход плазмообразующих газов измеряется, как правило, в единицах объема. Следует также учитывать изменение молекулярной массы при диссоциации двухатомных газов и ионизации.  [c.105]

На качество покрытий существенное влияние оказывают состав плазмообразующих газов, сила и напряжение тока, форма, ра 3 меры и прочность частиц напыляемого материала. Кроме того, особое значение для получения качественных покрытий имеют надежность работы одного из основных агрегатов плазменной установки — системы питания порошком и правильный выбор энергетического режима.  [c.96]

Из всех перечисленных плазмообразующих газов (см. табл. 112) наиболее широкое применение находит аргон. В среде аргона наиболее успешно происходит ионизация положительными ионами. Кроме того, аргон является нейтральным газом.  [c.435]

Подбором плазмообразующего газа можно создать окислительную, восстановительную или нейтральную среду плазменной струи.  [c.436]

Высокая энтальпия (температура может достигать 4000 -5000°С) обусловлена тепловым движением, ионизацией и диссоциацией молекул плазмообразующего газа. Скорость струи газа превышает скорость звука.  [c.436]

I - электрическая дуга 2 - порошок 3 - плазмообразующий газ 4 - вольфрамовый катод 5 - водоохлаждаемое сопло 6 - факел 7 - деталь й - покрытия  [c.436]

Покрытие наносили на установке фирмы Плазма-Техник АГ при следующем режиме I— 500>1, = 65 В, дистанция напыления 100— 130 мм. В качестве плазмообразующего газа использовали аргон с расходом 0,015-0,030 м /с. Порошок подавали дозатором с точностью 2%.  [c.111]

В качестве плазмообразующих газов применялся аргон, азот, гелий и их смеси, а в качестве материала покрытий — чистая окись алюминия (с размерами частиц 30—70 мк) и окись алюминия с добавками покровной кислотоупорной эмали Э-1 или грунтовой эмали 2015/3132, обычно применяемых при эмалировании химической аппаратуры [1]. Состав этих эмалей приведен в табл. 1.  [c.206]

Наименьшую пористость, равную 4.35%, получили ъ случае применения в качестве плазмообразующего газа смеси азота с гелием.  [c.214]

Для проведения эксперимента были использованы установка УПУ-2М с источником питания типа ИПН-160/600, горелка и бункер-питатель типа УМП-4-64. Мощность горелки изменялась от 12 до 32 квт. Плазмообразующие газы — аргон, гелий, азот (расход 2—3 м /час), транспортирующий газ — азот (расход 1.5 м /час), давление воды — 4.5 атм. Рабочие вольтамперные характеристики горелки показаны на рис. 1. С целью установления величины расхода порошка, равномерности его подачИ и коэффициента использования порошка (КИП) были проведены  [c.222]

Нами изучалось изменение плотности и прочности сцепления покрытия из окиси алюминия с хромом и никелем в зависимости от температуры предварительного подогрева подложки. Напыление производилось дуговой плазмой на стандартной установке УПУ-3 порошком окиси алюминия (смесь а- и у-модификаций) с размером частиц 40—60 мк. Поверхность образцов, на которую наносилось покрытие, шлифовали и затем полировали до 9 класса чистоты обработки. Это исключало какое-либо механическое зацепление покрытия с подложкой. Образцы имели форму цилиндра диаметром 12 мм и длиной 15 мм, их нагрев контролировали термопарой, приваренной к боковой поверхности. Плазмообразующим газом служил аргон с добавкой 3—5% аммиака. Расход газа со-  [c.227]

Для улучшения качества плазменных керамических покрытий (например, из окиси алюминия) предлагается более полно использовать химическую связь как между отдельными частицами в покрытии, так и между покрытием и подложкой. Для этого необходимо создать на поверхности подложки тонкий слой окисла, который обладал бы химическим сродством с материалом покрытия и одновременно был бы прочно связан с подложкой. Кроме того, для активизации поверхности подложки необходим ее предварительный подогрев не ниже определенной минимальной температуры, которая определяется составом взаимодействующих окислов. Подогрев подложки при напылении окиси алюминия улучшает структуру и увеличивает относительную плотность покрытия до 90—94%, а также повышает его сцепление с подложкой. Повышение эффективности нагрева порошка в струе плазмы достигается за счет применения добавок аммиака к основному плазмообразующему газу. Библ. — 10 на.зв., рис. — 4, табл. — 1.  [c.345]


Из всех методов газотермического напыления (газопламенного, электродугового, высокочастотного и др.) для целей получения композиционных материалов наиболее широко используют — метод и аппаратуру плазменного напыления. В аппаратах плазменного типа для плавления и распыления материала покрытия используется струя дуговой плазмы, представляюш,ая собой поток газообразного вещества, состоящего из свободных электронов, положительных ионов и нейтральных атомов. Плазменную струю получают путем вдувания плазмообразующего газа (аргона, гелия, азота, водорода и их смесп) в электрическую дугу, возбуждаемую между двумя электродами. Напыляемый материал подается в плазменную горелку либо в виде проволоки, либо в виде порошка. Принципиальные схемы устройства головок плазменных горелок показаны на рис. 75. В головке, представленной на рис. 75, а, напыляемый порошок вводится в дуговую плазму, образуемую между вольфрамовым электродом (катодом) и соплом (анодом). В головке, представленной на рис. 75, б, сопло остается электрически нейтральным, а дуговой разряд возникает между вольфрамовым электродом горелки и напыляемой проволокой, которая является расходуемым анодом [36].  [c.170]

В процессе плазменного напыления очень важно обеспечить достаточно хорошую связь между напыленным слоем и волокнами, а также между напыленным слоем и фольгой. Хорошая связь между этими тремя составляющими композиционного материала значительно облегчает операции раскроя и укладки, предотвращает отрыв и поломку волокон. Прочность связи покрытия с волокнами и фольгой, так же как и качество покрытия, его пористость, содержание примесей, определяют следующие основные технологические параметры 1) состояние поверхности волокон и фольги (чистота, шероховатость) 2) окружающая атмосфера (воздух, аргон, водород, азот) 3) температура напыляемой поверхности (подложки) 4) расстояние от дуги до напыляемой поверхности 5) напряжение и плотность тока дуги 6) расход плазмообразующего газа 7) скорость подачи напыляемого материала (порошка или проволоки) 8) размер частиц напыляемого порошка 9) скорость перемещения факела относительно напыляемой поверхности.  [c.171]

Плазменное напыление покрытий имеет ряд преимуществ по сравнению с защитными покрытиями других видов сверхвысокие температуры плазменного напыления позволяют расплавлять и наносить различные материалы с высокой температурой их плавления поток плазмообразующего газа, не содержащего кислорода, позволяет напылять материалы без их разложения, не допуская окисления поверхности обрабатываемого изделия поток плазмы дает возможность получать сплавы различных материалов, в том числе тугоплавких, теплостойких, и наносить многослойные покрытия высокая скорость потока газа позволяет увеличить плотность покрытия до 98% и достичь прочного сцепления с основным металлом заготовки покрываемая поверхность заготовки нагревается до температуры не выше 200° С, что исключает коробление деталей и позволяет наносить материал на дерево, пластмассы и т. п. энергетические характеристики потока плазмы легко регулировать в зависимости от требований технологии, что неосуществимо при газопламенном методе напыления.  [c.327]

Эффект распыления зависит от свойств распыляемого металла и мощности плазменной струи, пропорциональной весовому расходу плазмообразующего газа и квадрату скорости истечения струи из сопла горелки. Соотношение количества тепла, вводимого плазменной струей в металл, объема поступающего холодного металла и мощности струи определяют вид процесса распыления, который может быть капельным и струйным. В работе экспериментально установлены и зафиксированы различные стадии перехода от капельного распыления к струйному.  [c.58]

На эффективную тепловую мощность плазменной струи оказывают также влияние расход плазмообразующего газа и величина дугового промежутка. Тепловая мощность зависит, кроме того, от выбора и состава плазмообразующего газа, диаметра сопла и ряда других факторов, принятых в настоящей работе постоянными.  [c.59]

Рис. I. 17. Зависимость гранулометрического состава вольфрамового порошка от а — силы тока б — величины дугового промежутка в — расхода плазмообразующего газа г — скорости подачи проволоки. Индексы кривых соответствуют номерам режимов в табл. I. 24 Рис. I. 17. Зависимость гранулометрического состава вольфрамового порошка от а — <a href="/info/279416">силы тока</a> б — величины дугового промежутка в — расхода <a href="/info/285605">плазмообразующего газа</a> г — скорости подачи проволоки. Индексы кривых соответствуют номерам режимов в табл. I. 24
Расход плазмообразующего газа 160 85 1,7 2,16 12 2,2  [c.60]

Дуговую плазменную струю для сварки и резки получают по двум основпым схемам (рис. 53). При плазменной струе прямого действия изделие включено в сварочную цепь дуги, атстивные пятна которой располагаются па вольфрамовом электроде и изделии. При плазменной струе косвенного действия активные пятна дуги находятся на вольфрамовом электроде и внутренней или боковой поверхности сопла. Плазмообразующий газ мон ет служить также и защитой расплавленного металла от воздуха. В некоторых случаях для защиты расплавленного металла используют подачу отдельной струи специального, более дешевого за-п1,итного газа. Газ, перемещающийся вдоль степок сопла, менее ионизирован и имеет пониженную температуру. Благодаря этому предупреждается расплавление сопла. Однако болынинство илаз-менных горелок имеет дополнительное водяное охлаждение.  [c.65]


Дуговая плазменная струя — интенсивный источник теплоты с Бшроким диапазоном технологических свойств. Ее можно исполь зовать для нагрева, сварки или резки как электропроводных металлов (обе схемы рис. 53), так и неэлектропроводпых материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия, рис. 53, б). Тепловая эффективность дуговой плазмониой струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости  [c.65]

В зависимости от металла в качестве плазмообразующих газов можно использовать азот, водород, аргоно-водородные, аргоноазотные, азото-водородные смеси. Использование для резки  [c.66]

Возможность эффективной тепловой зашиты корпусных элементов от больших тепловых потоков успешно используется и при создании экспериментальных СВЧ плазмотронов [64]. Схемы СВЧ плазмотронов с предполагаемыми картинами течений при прямоточно-вихревой и возвратно-вихревой стабилизации плазмы показаны на рис. 7.30, а на рис. 7.31 показана зависимость мощности плазменного СВЧ излучения поглощаемого разрядом, и тепловой мощности fV , вьшеляюшейся в контуре охлаждения плазмотрона. Результаты опытов приведены в виде зависимости доли тепловых потерь WJW от удельного вклада энергии в разряд У = WJG, где G — расход плазмообразуюшего газа — азота. Результаты численного моделирования показаны на рис. 7.32,а — для традиционной прямоточно вихревой стабилизации и на рис. 7.32,6 — для случая с возвратно-вихревой стабилизацией. В первом случае рабочее тело — плазмообразующий газ — азот в виде закрученного потока подается в разрядную камеру, а во втором случае он подается в дополнительную вихревую камеру со скоростями 100 м/с ((7= 1 г/с) и 225 м/с ((7= 1,5 г/с), соответственно. По мнению автора работы [64] возвратный вихрь сжимает зону нагрева, предохраняя стенки камеры плазмотрона от перегрева. Основная часть газа проходит через разрядную зону, а размер зоны рециркуляции незначителен. В традиционной схеме (см. рис. 7.32,а) входящий газ смешивается с циркулирующим потоком плазмы и основная часть газа проходит мимо разряда вдоль стенок кварцевой трубки. Судя по приведенным модельным расчетам, схема с возвратно-вихревой стабилизацией позволяет снизить максимально достижимую температуру нагрева корпусных элементов примерно в 2,5 раза. Наиболее нагретая часть область диафрагмы, непосредственно примыкающая к отверстию имеет температуру 1400 К. Таким образом, использование возвратно-вихревой стабилизации плазмы позволяет изготовить СВЧ плазмотрон неохлаж-даемым из кварцевого стекла. Дальнейшее моделирование течения  [c.356]

В зависимости от металла в качестве плазмообразующих газов можно использовать азот, водород, аргоно-водородные, аргоноазотные, азотно-водородные смеси. Использование для резки двухатомных газов (Нг, N2) энергетически более выгодно. Двухатомный газ поглощает при диссоциации в плазмотроне тепло, которое переносится и выделяется на поверхности реза, где происходит объединение свободных атомов в молекулы. При использовании электродов из циркониевых и гафниевых сплавов в качестве плазмообразующего газа при резке можно использовать воздух.  [c.93]

В/мм н2 >0 В/мм (при / =10 А). Следовательно, при одинаковом токе в аргоновой дуге выделяется на 1 мм ее длины меньше энергии IE, чем в других. Во-вторых, энтальпия (объемное теплосодержание) аргоновой плазмы при температуре этой плазмы также значительно меньше (рис. 2.60), чем плазмы азота или водорода (для N2— 16 Аг — 3 Hj— 12 кВт/м при Т— 10 000 К). Однако температура плазмы существенно зависит от свойств плазмообразующего газа для Аг и Не = = 15 ООО...25 ООО К, что в 3...4 раза выше, чем для N2 и Иг = = 5000...7ООО К). Подходящим газом для стабилизации дуги может быть азот (или воздух, содержащий до 78% азота), так как его энтальпия при 7" = 10 ООО К в 5 раз больше энтальпии аргона и, кроме того, азот значительно дешевле.  [c.104]

Плазмообразующий газ выбирают исходя из требуемой температуры потока, его теплосодержания. Чаще всего останавливаются на смесях аргона с водородом или аргона с азотом. Добавка к аргону водорода или азота делается с целью увеличения теплосодержания потока. Энергетические параметры плазменного потока определяются мощностью, подводимой к плазменной головке, и для каждого конкретного случая разрабатываются специально. Основным требованием к форме и к размерам частиц порошкообразных напыляемых. материалов является их транспортабельность газовым потоком в зону плазменной струи. Порошок должен не комковаться, не создавать заторов в транспортных трубопроводах системы питания установки и равномерно подаваться в плазменную струЮ. С помощью методов порошковой металлургии можно  [c.96]

Применение плазмообразующих газов, не содержащих kh vio-род, уменьшает окисление напыляемого материала и материала основы (объекта напыления), в качестве которой можно использовать самые разнообразные материалы, металлы, керамику, чу ун, графит, стали, сплавы титановые, никелевые, магниевые и т.д.  [c.437]

Покрытия наносились на малоуглеродистую и среднеуглеродистую сталь. Предварительно были проведены эксперименты по выбору оптимальных расхода плазмообразующего газа, расхода газа для подачи напыляемого материала, диаметра ппазмообразующего канала плазмогенератора, расстояния от плазмогенератора до образца и других параметров процесса, а также деталей конструкции плазмотрона.  [c.206]

Материал образца Плазмообразующий газ, давление, н/см Расстоя- ние от длазмо-гсператора до образца, мм Работа удара, дж Примечание  [c.208]

Плазмообразующий газ Давление газа в питателе, н/см Расстояние -от плазмо-генератора до образца, мм Пористость слоя, /о  [c.214]

Установлено, что покрытия отличаются миогофазностью и состоят ип кубической и моноклинной модификаций 2гОа, ЗЮз п стекловидном состоянии и небольших количеств свободного алюминия. Взаимодействие продуктов разложения циркона с алюминием при высокотемпературном напылении композитного порошка приводит к образованию окисленных систем типа 2г—А1 и гг—31, Пористость покрытий составляет 10—20 % в зависимости от режима напыления и рода плазмообразующего газа. Для покрытий из порошка оптимального состава (20 мае. % металла) прочность сцепления со сплавом АК-4 достигает 35—40 МПа, а значения козффициента эффективной теплопроводности равны 0,30—0.35 Вт м °С .  [c.243]

Воздействие плазменной струн иа волокна бора и волокна карбида кремния изучено М. X. Шоршоровым с сотрудниками. Плазмообразующим газом в этих экспериментах служил аргон (расход 2,7—3,0 м /ч). Исследовали борные волокна без покрытия, волокна с покрытием из карбида кремния и карбида бора и волокна карбида кремния. Определяли степень разупрочнения этих 172  [c.172]

Процесс плазменного напыления использовали для получения композиции алюминий — стальная проволока (12Х18Н10Т) [24]. На цилиндрическую оправку наматывали с небольшим натягом слой алюминиевой фольги. Стальную проволоку диаметром 0,2 мм наматывали на фольгу с помощью намоточного устройства с шагом, изменяющимся от 0,25 до 1 мм. Оправку с намотанной проволокой переносили в камеру плазмотрона (УПУ-3), в которой по заданному режиму напыления наносили алюминиевое покрытие из порошка зернистостью от 50 до 100 мкм. Минимальная пористость напыленного слоя, составляющая 25—30%, достигалась при следующем режиме напыления напряжения 32 В, силе тока 760 А, расходе плазмообразующего газа от 20 до 30 л/мин. Толщина армированного монослоя составляла 0,4 мм, равномерность укладки волокон в процессе плазменного напыления не нарушалась. Для получения компактного, плотного материала требуемой  [c.175]


Было исследовано влияние изменения силы тока, величины дугового промежутка и расхода плазмообразующего газа на гранулометрический состав получаемого порощка.  [c.59]

Напыление покрытий на детали ламинарной высокоэнтальпийной плазменной струей (рис. 9) позволяет сократить расход плазмообразующего газа в 3—5 раз. Кроме того, при этом не требуется применения транспортирующего газа, а длина плазменной струи увеличивается в 7—9 раз при снижении угла распыления до 1-3°С. Плотность сцепления покрытия с подложкой повышается в 2-3 раза (см. табл. 1).  [c.79]


Смотреть страницы где упоминается термин Плазмообразующий газ : [c.416]    [c.59]    [c.437]    [c.12]    [c.80]    [c.170]    [c.141]    [c.139]    [c.61]    [c.289]   
Сварка и резка металлов (2003) -- [ c.223 , c.225 ]



ПОИСК



Газы плазмообразующие

Защитные, плазмообразующие и горючие газы

Плазмообразующие сопла

Плазмообразующие среды и их физико-химические свойства



© 2025 Mash-xxl.info Реклама на сайте