Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазмотрон дуговой

Наибольшее распространение получили плазмотроны постоянного тока, как более простые по своим конструктивным схемам, обладающие высокой эффективностью преобразования электрической энергии в тепловую и имеющие простую схему электропитания. Плазмотроны переменного тока получили развитие благодаря простоте схем источников питания и электропитания плазмотронов, однако широкое их использование сдерживается из-за значительной эрозии электродов и невысокой стабильности горения электрических дуг. ВЧ-плазмотроны по своей конструкции достаточно просты и позволяют получить большие объемы спектрально чистой плазмы, но эффективность преобразования электрической энергии в тепловую у них не высока, так же как н у СВЧ-плазмотронов. Иногда используются комбинированные плазмотроны — дуговой — ВЧ-плазмотрон, постоянного и переменного тока и другие плазмотроны, позволяющие использовать соответствующие преимущества применяемых схем.  [c.85]


Для получения дуговой плазменной струи используют специальные плазменные головки или так называемые плазмотроны, в которых обычно имеется неплавящийся вольфрамовый или медный катод, изолированный от канала и сопла головки, а анодом может служить сопло или изделие.  [c.103]

Зажигание плазменного факела 4 производится от внешнего источника, например от дугового разряда, обеспечивающего начальную ионизацию газа. Температура плазмы зависит главным образом от рабочего газа и для аргона составляет 9500—11500 К-Проводимость ионизированного газа много ниже, чем металлов, поэтому плазмотроны работают при частотах 1—40 МГц. В последнее время в связи с увеличением мощности и размеров плазменных факелов происходит переход на более низкие частоты, 440 кГц и ниже. При использовании ферромагнитного сердечника кольцевой разряд возможен даже при средней частоте (10 кГц).  [c.222]

Из различных вариантов электродуговых подогревателей можно выделить плазмотроны, характерной особенностью которых является нахождение на одной оси дугового разряда и истекающей струи (рис. 11-1,6—(Э). При такой схеме не происходит смешения подогретого газа в сопле и за счет этого достигается максимальная температура 312 в струе. Максимально возможные температуры газа, получаемые на  [c.312]

В чем же сущность этой технологии Напомним, что плазма — это ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Ионизация газа может произойти, например, при его нагреве до высокой температуры, в результате чего молекулы распадаются на составляющие их автоматы, которые затем превращаются в ионы. Плаз менная обработка (резка, нанесение покрытий, наплавка, сварка) осуществляется плазмой, генерируемой дуговыми или высокочастотными плазмотронами. Эффект достигается как тепловым, так и механическим действием плазмы (бомбардировкой изделия частицами плазмы, движущимися с очень высокой скоростью). Плазменную резку успешно применяют при обработке хромоникелевых и других легированных сталей, а также меди, алюминия и др5 гих металлов, не поддающихся кислородной резке. Большая производительность и высокое качество плазменной резки не только дают возможность эффективно использовать этот прогрессивный процесс на автоматических линиях, но и позволяют исключить ряд до-  [c.55]

Рио. 1. Схема дугового плазмотрона постоянного тока 1 — электроды а — межэлектродная вставка 3 — соленоиды 4 — зона электрической дуги л — подача рабочего тела 6 — истечение плазмы.  [c.617]


Движение плазменных потоков в атмосфере горение дуги в атмосфере (см. Дуговой разряд) выход плазменных потоков из плазмотронов в атмосферу растекание плазменных сгустков в ионосфере.  [c.112]

При плазмохимическом синтезе используется низкотемпературная (4000—8000 К) азотная, аммиачная, углеводородная, аргоновая плазма дугового, тлеющего, высоко- или сверхвысокочастотного разрядов в качестве исходного сырья применяют элементы, их галогениды и другие соединения. Характеристики порошков зависят от используемого сырья, технологии синтеза и типа плазмотрона. Частицы плазмохимических порошков являются монокристаллами и имеют размеры от 10 до 100—200 нм и более. Плазмохимический синтез обеспечивает высокие скорости образования и конденсации соединения и отличается достаточно высокой производительностью. Главные недостатки плазмохимического синтеза — широкое распределение частиц по размерам и вследствие этого наличие довольно крупных (до  [c.23]

Плазмохимический синтез [24]. Синтез в низкотемпературной плазме осуществляют при высоких температурах (до 6000 — 8000 К), что обеспечивает высокий уровень пересыщения, большие скорости реакций и конденсационных процессов. Используются как дуговые плазмотроны, так и высоко- и сверхвысокочастотные (СВЧ) генераторы плазмы. Дуговые аппараты более производительны и доступны, однако СВЧ-установки обеспечивают получение более тонких и более чистых порошков. Схема такой установки приведена на рис. 4.6. В качестве исходных продуктов для плазмохимического синтеза используются хлориды металлов, металлические порошки, кремний- и металлоорганические соединения. СВЧ-установки типа изображенной на рис. 4.6 и плазмохимические порошки нитридов, оксидов и других соединений изготавливаются фирмой ЗАО Наноматериалы (Черноголовка, Московская область).  [c.123]

При разделительной резке плазменной струей сопло плазмотрона располагают в непосредственной близости (1,5. .. 2 мм) от поверхности заготовки и производят локальное выплавление или сжигание материала (см. рис. 5.12, а). Ширина реза при этом весьма незначительна - 1. .. 2 мм, шероховатость может составлять Rz 30. .. 40. Плазменной струей, полученной в столбе дугового разряда независимой дуги, разрезают неэлектропроводящие материалы (например, керамику), тонкие стальные листы, алюминиевые и медные сплавы, жаропрочные сплавы и т.д. При плазменной резке используют аргон, его смесь с водородом, воздух и другие газы.  [c.252]

Рис. из. Схемы дуговых плазмотронов прямого (о) и косвенного S) действия  [c.223]

При зажигании рабочих дуг электроды - деталь легко получить отношение тока в детали к току в электроде = 1,73. Это уменьшает диаметр электродов и позволяет уменьшить габариты и массу плазмотрона, что важно для ручной сварки. Другое преимущество трехфазной сжатой дуги - повышение стабильности повторных зажиганий в моменты перемены полярности, так как межэлектродная дуга постоянно ионизирует дуговой промежуток электроды - деталь. Благодаря этому по устойчивости трехфазная дуга близка к дуге постоянного тока.  [c.226]

При сварке сжатой дугой кроме общеизвестных параметров режима дуговой сварки назначают диаметр сопла плазмотрона, а также состав и расход плазмообразующего газа (табл. 23).  [c.231]

Плазменная резка 311 Плазменная сварка 8, 233 Плазмообразующие сопла 230 Плазмообразующий газ 223, 225 Плазмотрон 223 Пластические деформации 37 Пневматические испытания 358 Поверхностный эффект 264 Повторно-кратковременный режим источника питания дуги 94 Подогреватель газа 161 Покрытия электродов для ручной дуговой сварки 113, 115 Полуавтомат сварочный 141, 164 Полярность сварочной дуги 85 Порошковое копьё 310 Поры 338  [c.393]

Наибольшее применение нашли плазмотроны прямого действия, с комбинированным способом сжатия дугового разряда, однодуговые с тангенциальной подачей инертного газа, работающие на постоянном токе прямой полярности и с радиальной подачей материала. У плазмотрона различают основную дугу - между анодом и деталью и вспомогательную -между анодом и соплом. Токи обеих дуг регулируются балластными реостатами, включенными в соответствующие цепи.  [c.304]


Плазменно-дуговая резка металлов. Низкотемпературная плазма представляет собой электропроводящий газ с температурой в пределах 10 К. Низкотемпературную плазму для резки получают в электрической дуге, создаваемой в специальном инструменте — плазмотроне, пропуская через него технические газы.  [c.357]

Режущие плазмотроны. Они содержат два основных блока электродный и сопловой, электрически изолированные друг от друга, узлы подачи плазмообразующих газов, основного и вспомогательного тока, крепления электрода, а также системы охлаждения электрода и сопла (рис. 10.16). Электродный и сопловой блоки являются составными частями дуговой камеры, в которой возбуждается дуговой разряд при подаче плазмообразующих газов.  [c.358]

Сущность способа. Плазма - ионизированный газ, содержащий электрически заряженные частицы и способный проводить ток. Ионизация газа происходит при его нагреве. Степень ионизации тем выше, чем выше температура газа. В центральной части сварочной дуги газ нагрет до температур 5000. .. 30 ООО °С, имеет высокую электропроводность, ярко светится и представляет собой типичную плазму. Плазменную струю, используемую для сварки и резки, получают в специальных плазмотронах, в которых нагревание газа и его ионизация осуществляются дуговым разрядом в специальных камерах.  [c.145]

На практике находят применение два основных способа включения плазменных горелок (см. рис. 4.17). В первом - дуговой разряд существует между стержневым катодом, размещенным внутри горелки по ее оси и нагреваемым изделием (плазменная струя прямого действия). Такие плазмотроны имеют кпд выше, так как мощность, затрачиваемая на нагрев металла, складывается из мощности, выделяющейся в анодной области, и мощности, передаваемой аноду струей плазмы.  [c.188]

Основой для создания низкотемпературной плазмы является газоразрядная техника, в частности, плазмотроны или плазменные генераторы. Вид их зависит от того, какой тип разряда в них используется. Практическое применение находят устройства, использующие дуговой, высокочастотный, сверхвысокочастотный и, в некоторых случаях, оптический разряды. В настоящее время наибольшее распространение получили электродуговые и высокочастотные плазмотроны.  [c.442]

Дуговые плазмотроны. В них реализуется дуговой разряд при больших токах (от единиц ампера до десятков килоампер и более). Размер дуги может изменяться от нескольких миллиметров до 1 м и более, а ее мощность достигать десятков мегаватт. Принцип действия дугового плазмотрона прост - между электродами зажигается разряд, который нагревает обдувающий его газ до высокой температуры. Дуговой плазмотрон постоянного тока состоит из следующих основных узлов одного (катода) или двух (катода и анода) электродов, разрядной камеры и узла подачи плазмообразующего вещества.  [c.442]

Для плавления особо тугоплавких материалов применяются плазменные печи. По конструкции они подобны дуговым, но вместо электродов в них устанавливаются плазменные горелки — плазмсз-троны. В плазмотронах дуговой разряд используется для получения потока ионизированного газа-плазмы со сверхзвуковыми скоростями и высокой температурой (10000-20000 К), развиваемой благодаря эффекту сжатия при электрическом разряде в очень небольшом объеме ионизированного потока газа. Недостаток плазменных печей — малая стойкость плазмотронов.  [c.174]

Применения. Газовые разряды применяют в газосветных приборах, в электронных диодах с газовым наполнением, тиратронах, ртутных выпрямителях (игнитронах), в качестве стабилизаторов напряжения в счётчиках Гейгера ядер-ных частиц, в антенных переключателях, озонаторах, маг-нитогидродинамшеских генераторах. Широко используются электродуговая сварка, электродуговые печи для плавки металлов, дуговые коммутаторы. Получили большое распространение генераторы плотной равновесной низкотемпературной плазмы с К, /)--1 атм—плазмотроны (дуговые, индукционные, СВЧ). В них продуванием холодного газа через соответствующий разряд получают плазменную струю. Тлеющий и ВЧЕ-разряды используют для создания активной среды в лазерах самой разл. мощности—от мВт до многих кВт, в плазмохимии. Эти и др. приложения, использование результатов исследований Э. р. в г. в технике высоких напряжений поставило физику газового разряда в ряд наук, к-рые служат фундаментом совр, техники.  [c.514]

Простота эксплуатации плазмотрона. Данное требосаи ш включает простоту сборки и разборки плазмотрона, простоту крепления его в технологической зоне, легкость возбуждения электрического разряда, причем желательно без ввода дополнительных устройств в область разрядного канала. Например, для ВЧИ-раз-ряда желательно производить возбуждение плазмы без ввода поджигающих угольных стержней или без ввода дополнительных электродов и плазмотронов. Дуговой разряд желательно возбуждать без проволочек или вводимых в капал поджигающих электродов.  [c.84]

Плазменной струей, полученной в столбе дугового разряда независимой дуги, разрезают нез)лектропроводные материалы (напри мер, керамику), тонкие стальные листы, алюминиевые и медные сплавы, жаропрочные сплавы и т. д. При плазменной резке используют аргон, его смесь с водородом, воздух и другие газы. Скорость резки плазменной дугой при прочих равных условиях выше скорости резки плазменной струей. Плазменную резку выполняют специальным резаком, называемым плазмотроном.  [c.210]

Плазму получают в плазмотронах (рис. 7.16). Дуговой разряд 3 возбуждается между вольфрамовым электродом 5 и медным электродом 4, выполненным в виде трубы и охлаждаемым проточной водой. В трубу подают газ (аргон, азот) или смесь газов. Обжимая дуговой разряд, газ при соединении с электронагли ионизируется и выходит из сопла плазмотрона в виде ярко светящейся струи 2, которая направляется на обрабатываемую заготовку /.  [c.415]


Периферийный квазипотенци-альный вихрь, выполняя функцию тепловой защиты стенок камеры сгорания и других элементов конструкции, обеспечивает стабилизацию дугового разряда, офани-чивая рост дуги при увеличении рабочего тока [78, 149, 192]. Вихревая характеристика вихревого плазмотрона имеет восходящий участок, наличие которого улучшает технологические качества устройства, обеспечивая возможность гарантированной устойчивой работы дуги на восходящем участке при отсутствии в электрической цепи питания балластного сопротивления. Эго нетрудно показать, воспользовавшись анализом уравнения Кирм-офа, записанного для цепи электропитания плазмотрона [78]. Горение дуги будет устойчивым, если действительные части корней уравнения Кирхгофа отрицательны  [c.355]

К работам по карбидным твердым сплавам примыкают работы кафедры по исследованию условий получения и физико-технических свойств литых карбидов (канд. техн. наук А. Н. Степанчук). Сложное исследование условий переплавки расходуемых карбидных электродов в дуговой электропечи привело к разработке оптимальных условий переплавки с получением плавленных карбидов не только предельного состава, но и в областях гомогенности. Особые условия формирования и кристаллизации плавленных карбидов приводят к появлению у них свойств, недостижимых при использовании металлокерамической технологии, что определило их успешное использование в качестве эффективных ускорителей электронов, катодов плазмотронов, абразивов (в последнем случае зерна плавленных карбидов имеют прочность, в несколько раз превышающую прочность обычно полученных абразивных частиц тех же карбидов).  [c.80]

Функциональную основу Г. п., как правило, составляет газовый разряд (дуговой, тлеющий, высокочастотный, СВЧ-разряд, лазерный, пучково-плазменный). Для генерации плазмы пока ещё редко используется ионизация рабочего вещества резонансным излучением, но в будущем, в связи с развитие.м лазеров, такие Г. п. могут получить значит, распространение. Г. п., работающие на газах при давлениях, сравнимых с атмосферным, обычно наз. плазмотрона,ии. Г. п., работающие на газах низких давлений, как правило, входят в состав более крупных устройств, напр, двухступенчатых плазменных ускорителей или ионных источников. Если в плазмотронах одной из основных конструктивных трудностей является защита стенок газоразрядного канала от больших тепловых потоков, то в Г. п. пизкого давления возникает проблема предотвращения гибели за ряж. частиц на стенках. С этим борются, используя экранировку стенок магн. и электрич. полями (см. Ионный источник), а также совмещая ионизацию и ускорение в одном объёме, благодаря чему поток плазмы попадает преим. в выходное отверстие Г. п. (см. Ллаз-.пенные ускорители). В связи с задачами плазменной технологии большое внимание уделяется разработке Г. п., непосредственно генерирующих плазму из твёрдых веществ. Наиб, распространение для этих целей получили вакуумные дуги с холодным катодом. Воз-  [c.434]

Непрерывный оптический разряд (НОР) — стационарное поддержание плотной равновесной плазмы излучением лазера непрерывного действия (напр., СО -ла-зера) был предсказан теоретически и получен на опыте в 1970. По сравнению с традиц. способами поддержания плазмы с Г 10 000 К при помощи дугового, индукционного, СВЧ-раэрядов для подвода энергий к плазме оптич. способом не требуется конструктивных элементов электродов, индуктора, волновода. Световая энергия свободно передаётся на расстояние световым лучом. Это открывает возможность зажигания плазмы на расстоянии от лазера и в любых, даже труднодоступных местах. Если продувать холодный газ через горящий НОР, подобно тому, как это делается в дуговых и прочих генераторах непрерывной плазменной струи — плазмотронах, получается оптический плаз-  [c.449]

В АЭСА исследуемое вещество должно находиться в состоянии атомного газа, Обычно атомизация и возбуждение атомов осуществляются одновременно — в источниках света. Для анализа металлов, сплавов и др. нроводников чаще всего используют дуговой разряд или искровой разряд, где в качестве электродов служат сами анализируемые пробы. Дуговой разряд применяется и для анализа непроводящих веществ. В этом случае порошкообразную пробу помещают в углубление в графитовом электроде (метод испарения) или с помощью разл. устройств вводят порошок в плазму дугового разряда между горизонтально расноложевными графитовыми Электродами. Применяется также введение порошкообразных проб в дуговые плазмотроны.  [c.617]

Плазмохимический синтез включает несколько этапов. На первом происходит образование активных частиц в дуговых, высокочастотных и сверхвысокочастотных плазмотронах. Наиболее высокой мощностью и коэффициентом полезного действия обладают дуговые плазмотроны, однако получаемые в них материалы загрязнены продуктами эрозии электродов безэлектрод-ные высокочастотные и СВЧ плазмотроны не имеют этого недостатка. На следующем этапе в результате закалки происходит выделение продуктов взаимодействия. Выбор места и скорости закалки позволяет получить порошки с заданными составом, формой и размером частиц. Получаемые в результате плазмохимического синтеза порошки имеют правильную форму и размер частиц от 10 до 100 нм и более.  [c.24]

Плазменная плавка характеризуется высокими и сверхвысокими температурами, при которых вещество находится в газононизированном состоянии. Для иирометаллургических операций наиболее устойчивой является плазма на основе аргона или его смеси с водородом либо азотом, образуемая электрическим разрядом постоянного тока в дуговых либо струйных плазмотронах. Коэффициент полезного действия плазмотронов невелик — дуговых 10—15, струйных 2—3 °/о. Принципиальные схемы основных типов плазменных установок показаны на, рис. 151—152.  [c.421]

Принщ1пиально новым методом изготовления деталей является плазменное напыление с целью получения заданных размеров. В камеру плазмотрона подаются порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит в состояние плазмы. Струя плазмы сжимается в плазмотроне плазмообразующим газом. Выходя из сопла, струя плазмы направляется на обрабатываемую заготовку. Системы вертикальной и горизонтальной разверток обеспечивают перемещение струи по поверхности обработки.  [c.455]

В плазмотронах сжатие дуги чаше всего осуществляется газовым потоком, который, проходя сквозь узкое сопло, ограничивает поперечные размеры дуги (рис. 4.17). Газ, подаваемый внутрь плазмотрона, выходит сквозь узкое отверстие в сопле, оттесняя дугу от стенок. Для устойчивой работы плазмотрона стенки сопла охлаждаются водой и при работе остаются холодными. Пристеночный охлажденный слой газа изолирует плазму от сопла как в электрическом, так и в тепловом отношении. Поэтому дуговой разряд между электродом внутри горелки и изделием (или соплом) стабилизируется и проходит сквозь центральную часть отверстия в сопле. Способ сварки сжатой дугой часто называют также плазменнодуговой сваркой или сваркой плазменной струей.  [c.187]

Оборудование для плазменно-дуговой резки. В состав оборудования для плазменно-дуговой резки входят режущий плазмотрон, пульт газовый с газорегулирующей и измерительной аппаратурой, блок электрооборудования, источник питания, устройство передвижения плазмотрона. Для плазменно-дуговой резки применяются те же типы машин, что и для кислородной резки.  [c.238]


Формирующее сопло — наиболее теплонапряженный элемент плазмотрона. Рекомендуется соблюдать определенные соотношения между диаметром катода, диаметром сопла и длиной его канала. Величина диаметра катода определяется током дуги. Материалом катода при воздушно-дуговой резке служит лантанн-рованный вольфрам.  [c.220]

Пробивка отверстий — наиболее сложная операция плазменно-дуговой резки из-за возможности двойного дугообразования и выхода из строя плазмотрона. Поэтому в момент пробноки плазмотрон должен быть поднят над листом на 20—25 мм, т. е. значительно выше, чем при резке, и опушен в рабочее положение после того, как металл будет пробит струей плазмы насквозь. С увеличением толщины металла пробивка его усложнятся и рекомендуется использование защитных экранов между изделием и плазмотроном с отверстием диаметром 10—12 мм по оси дуги.  [c.222]


Смотреть страницы где упоминается термин Плазмотрон дуговой : [c.151]    [c.354]    [c.354]    [c.8]    [c.89]    [c.421]    [c.524]    [c.257]    [c.221]    [c.442]    [c.618]   
Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.426 ]



ПОИСК



Исследование движения дугового разряда в плазмотроне и обобщение результатов

Плазмотрон

Плазмотроны с вихревой стабилизацией дугового разряда

Плазмотроны с магнитной стабилизацией дугового разряда

Характеристики дугового разряда в плазмотронах постоянного тока

Характеристики дугового разряда в плазмотроне с вихревой стабилизацией

Характеристики дугового разряда в плазмотроне с магнитной стабилизацией

Экспериментальное исследование дугового разряда в плазмотроне с магнитной стабилизацией



© 2025 Mash-xxl.info Реклама на сайте