Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы освещения и наблюдения

МЕТОДЫ ОСВЕЩЕНИЯ И НАБЛЮДЕНИЯ  [c.12]

Методы освещения и наблюдения  [c.13]

Книга не может претендовать на полноту изложения всех затронутых в ней вопросов. Более подробные сведения по теории микроскопа, источникам и приемникам излучения, методам освещения и наблюдения и т. д. читатели могут найти в списке литературы, приведенном в конце книги.  [c.4]

В качестве фотометрического параметра, определяющего блеск, принимают, как правило, коэффициент яркости для определенных условий освещения и наблюдения. Оказалось, что из-за большого разнообразия в характере отражения света различными материалами не удается найти единый фотометрический параметр, хорошо коррелирующий со зрительной оценкой блеска различных объектов. Поэтому для объектов измерения с различными характеристиками отражения света были предложены различные методы и приборы, с помощью которых судят о блеске поверхности этих образцов.  [c.183]


В этой главе еще не рассматривается голографический процесс как таковой, поскольку считали его идеальным и полагали, что изображения идентичны объекту. Вид интерференционной картины определялся, таким образом, только деформацией объекта и способом его освещения и наблюдения. Теперь будем принимать во внимание возможное появление паразитных интерференционных картин, особенно при определении числа полос или их видности. Чтобы устранить эти недостатки, а также получить новые методы измерения смещения и его производных, можно изменять вид интерференционной картины известным способом вносить изменения в оптическую схему о других методах см., например, в [4.160, 4.214]. Для этого необходимо иметь возможность воздействовать независимо на каждое интерферирующее поле.  [c.133]

Недостатком рассмотренного устройства является специфическая для данного зеркального объектива нечеткость передаваемого изображения вследствие технологической сложности выполнения высококачественной поверхности эллиптического зеркала. В последнее время в ЛОМО разработаны новые зеркально-линзовые объективы, позволившие создать весьма совершенные оптические системы, предназначенные для исследований методами тепловой микроскопии. В частности, при использовании объективов с рабочими расстояниями 32 и 17,2 мм и апертурами 0,4 и 0,65 получили оптическую систему, обеспечивающую наблюдение объекта в светлом поле, при косом освещении и методом фазового контраста.  [c.99]

Оптическая система установок ВМС-1 и ВМД-1 обеспечивает возможность наблюдения образца в светлом поле, при косом освещении и методом фазового контраста.  [c.136]

Источник света с Кг можно охлаждать до температуры тройной точки азота и даже ниже. При таких условиях ширина линий Кг оказалась значительно меньше, чем линий Hg и d, хотя они и тяжелее Кг. Ртуть хорошо светится лишь при 10- -15° С при более низкой температуре спектр ртути теряет свою яркость и свечение прекращается, упругость паров перестает быть достаточной для возбуждения спектра. Кадмий светится при еш е более высокой температуре. Для кадмиевых источников света упругость d достаточна для возбуждения спектра лишь при 270—290° С. По теоретическим подсчетам наименьшей шириной линий обладает Кг наибольшей — d. Однако ширина линий связана и с методом возбуждения спектра. Наблюдение свечения при низких температурах — это только один из методов уменьшения влияния допплеровского уширения. Для тех веществ, у которых упругость пара чрезвычайно мала при низких температурах, есть и другие методы. При описании конструкций источников света этот вопрос будет подробно освещен. Здесь же можно сделать заключение, что ширина спектральной линии не является решающим фактором при выборе ее в качестве первичной эталонной длины волны. Гораздо важнее вопрос симметрии, а также значение расхождения между теоретически вычисленной для данных условий и экспериментально полученной шириной спектральных линий.  [c.47]


Вспомогательный микроскоп, применяемый для настройки освещения по методу фазового контраста, полезно использовать и при настройке всех других методов освещения, так как он облегчает наблюдение выходного зрачка объектива.  [c.28]

Конденсоры служат для осуществления различных методов освещения препарата, исследуемого под микроскопом, проходящим светом. Конденсоры применяются с рабочими, лабораторными и дорожными моделями биологических и поляризационных микроскопов, а также и с некоторыми другими. Конденсор для наблюдения по методу фазового контраста входит в фазово-контрастное устройство, которое описано в отдельной группе..  [c.166]

Кроме того, регистрация голограммы в плоскости изображения дает возможность при необходимости производить сокращение регистрируемого спектра пространственных частот без сопровождающего обычно такую операцию ограничения поля зрения [56]. Наконец, путем использования голограмм сфокусированных изображений автоматически реализуется метод компенсации аберраций оптической системы [42]. Речь идет об освещении голограммы волной, сопряженной опорной, и наблюдении реконструированной волны через оптическую систему, формировавшую на этапе регистрации объектный пучок ).  [c.11]

Метод формирования голографического изображения по доплеровскому разбросу частоты используется главным образом при получении голограмм вращающихся объектов. Объект освещается лазерным светом, и его изображение с помощью телескопа формируется на голографической пленке. Обусловленный вращением объекта доплеровский сдвиг частоты используется для кодирования сигнала по времени. Свет, рассеянный поверхностью объекта, в любом данном направлении имеет определенную несущую частоту для данного пути освещения и пути наблюдения. Следовательно, опорный пучок имеет сдвиг временной частоты, который соответствует доплеровскому сдвигу частоты в каждом отдельном направлении. Иными словами, свойство временной фильтрации голограммы преобразует функцию размытия временного канала в пространственную функцию размытия. Ширина этой пространственной функции размытия определяется временными переменными. Изображение с такой голограммы восстанавливается обычными способами.  [c.352]

Описанный метод освещения называется методом светлого поля. Он применяется при наблюдении контрастных препаратов с различной абсорбцией элементов структуры. Такие препараты освещают прямым проходящим светом. В этом случае пучок лучей из конденсора заполняет большую часть апертуры объектива и, в отсутствие препарата, равномерно освещает поле зрения. Поглощающие элементы структуры выглядят темными на светлом фоне. Метод может быть полезен и при непоглощающих объектах в том случае, когда элементы их структуры отклоняют или рассеивают свет настолько сильно, что значительная часть освещающего пучка не попадает в объектив.  [c.20]

При наблюдении непрозрачных объектов в отраженном свете применяются аналогичные методы освещения. В случае метода светлого поля освещение производится при помощи опак-иллюминатора через объектив микроскопа, который выполняет одновременно и роль конденсора (рис. П). Свет из осветителя 1—5 полупрозрачной пластиной 6 через объектив 7 направляется к препарату 8. Отраженный объектом свет проходит сквозь объектив 7 и пластину 6 к окуляру, где создается изображение (так же, как и в случае прозрачного объекта).  [c.23]

Статистический метод определения погрешностей обработки достаточно полно освещен в трудах по технологии машиностроения и в специальной литературе, поэтому ограничимся лишь кратким изложением сущности метода, основанного на наблюдениях результатов обработки деталей машин, проводимых в производственных условиях.  [c.35]

Таким образом, разрешаемое расстояние меняется с изменением условий освещения и должно рассматриваться как ориентировочное. При этом надо еще раз подчеркнуть, что полученные результаты относятся к визуальным наблюдениям. Применение других физических методов исследования может понизить разрешаемый предел.  [c.363]

В этой связи в Акустическом институте АН СССР экспериментально исследовался процесс роста воздушных пузырьков в жидкости. Для этого использовалась замедленная микрокиносъемка [24- 33]. На рис. 5 представлена схема установки, с помощью которой проводился опыт. Создаваемые излучателем 1 ультразвуковые колебания частотой 26,5 кгц вводились в ванну 2 со стороны свободной поверхности жидкости. Для создания бегущей волны дно ванны и ее стенки были покрыты слоем резины. Звуковое давление измерялось звукоприемником волноводного типа 3, показания которого фиксировались милливольтметром 4 и осциллографом 5. Пузырек воздуха располагался на конце приемной иглы звукоприемника наблюдение и фотографирование производились при помощи микроскопа 6 и фоторегистрирующей камеры 7. Ванна имела три смотровых окна для освещения 8 и наблюдения за пузырьками 9. Температура поддерживалась постоянной (17° С) благодаря змеевику 10. Концентрация воздуха в воде составляла 0,025 см 1мл (измерения выполнялись методом Винклера и так называемым методом КОН, описанным в дальнейшем).  [c.269]


Метод Аббе не только позволяет вывести значение разрешающей способности для освещенных объектов, но и показывает, что результаты наблюдения в микроскоп могут сильно зависеть от условий  [c.354]

Здесь нет необходимости углубляться в обширную область методов создания освещенностей, применяемых в оптической микроскопии. Однако полезно показать на рис. 1.7 некоторые приемы, специально используемые для наблюдения и регистрации дифракционных картин Фраунгофера, как правило, в целях оптической фильтрации (гл. 5). Из них на рис. 1.7, а представлен еще один способ получения той же освещенности, как на рис. 1.5 и 1.6, в то время как схемы б и в дают почти такие же картины как а. Если необходима детальная передача фазы и амплитуды, требования к схеме являются более строгими. Полный учет свойств линз, формирующих изображения, показывает, что в этом случае требуется схема, представленная на  [c.23]

Для исследования начальных стадий коррозии (глубина поражения до 3 мкм) применяют чувствительные микроинтерферометры МИИ-4, МИИ-10, МИИ-12 [12]. Микроинтерферометр представляет собой соединение двух оптических систем микроскопа и интерферометра. В поле зрения микроинтерферометра наблюдается исследуемая поверхность, на которую накладывается изображение интерференционных полос по величине изгиба этих полос можно судить о глубине изъязвлений. Величина изгиба определяется с помощью окулярного винтового микрометра. Большое распространение для определения глубины коррозии получил метод светового сечения профиля с помощью двойного микроскопа Линника. Этот прибор (рис. 1.10) представляет собой систему двух микроскопов осветительного и микроскопа наблюдения, расположенных под углом друг к другу. При освещении прокорродировавшей поверхности через узкую щель в поле зрения микроскопа видна (в результате различного отражения от выступов и впадин) извилистая линия, точно воспроизводящая профиль язвы в перевернутом виде. Высоту профиля измеряют, подводя визирный крест окуляра с помощью микрометрического винта поочередно к основанию профиля и его вершине. Этим методом можно измерять поражения глубиной от 3 до 100 мкм с точностью 3—5%. При использовании специальных оптических устройств можно повысить верхний предел измерений до 1000 мкм. Точность метода снижается при измерении глубины узких язв с крутыми стенками, в которые затруднено проникновение света.  [c.21]

Конденсоры. В зависимости от требуемого метода наблюдения в микроскопах применяются конденсоры различных типов конденсор светлого поля конденсор с апертурной диафрагмой, смещающейся перпендикулярно оптической оси для обеспечения косого освещения конденсор темного поля и специальный конденсор для наблюдения по методу фазового контраста. Конденсор представляет собой двух- или трехлинзовую оптическую систему с ирисовой апертурной диафрагмой. Численная апертура конденсоров при условии применения иммерсионной жидкости достигает вели-  [c.21]

Существенным отличием микроскопа МЛ-2 является возможность работы комбинированным методом, т. е. одновременное наблюдение люминесценции при освещении препарата сверху и эффекта фазового контраста в проходящем свете.  [c.72]

СПЕКТРОФОТОМЕТРИЯ совокупность методов фо-тометрированин потоков оптич. излучения от источников излучения или после его взаимодействия с образцами в зависимости от длины волны объединяет разделы спектрометрии, фотометрии и метрологии. С. источников излучения наз, спектрорадиоме т-р и е й она занимается измерениями энергетич. характеристик изл чения и излучателей (потока силы света, светимости, яркости, освещённости и т. и.). В узком смысле под С. понимают теорию и методологию измерений фотометрия, характеристик образца, безразмерных коэф., определяемых отношением потоков X = Ф/Фд (где Фо — поток, падающий на образец, Ф — поток, наблюдаемый после взаимодействия с образцом) в зависимости от направлений освещения и наблюдения величина X — коэф. пропускания, отражения или рассеяния. Специфич. случай С.— метод нарушенного полного внутреннего отражения.  [c.626]

Пример определения перемещений консольной балки методом двухэкспозиционной спекл-фотографии приведен на рис. 23.17. Схема регистрации аналогична эксперименту по определению перемещений методом голографической интерферометрии (рис. 23.13). Формальное отличие заключается в изменении направлений освещения и наблюдения на обратные. Принципиально то, что в случае спекл-фотографии измеряются компоненты перемещений в плоскости Оху. Но так как uпрогибы консольной балки, а не перемещения и, как это имеет место, в голографической интерферометрии (рис. 23.13).  [c.545]

Методы ЯМР и квантовой магнитометрвн. Большие времена спиновой релаксации ядер т позволяют накопить в освещаемом полупроводнике ядерную поляризацию, на неедс. порядков превышающую её термодинамически равновесное значение. Процессы О. о. электронных спинов и наблюдение её результатов разделены во времени. Созданную путём освещения в слабом магн. поле ядерную поляризацию измеряют с помощью ЯМР-спектрометра или сквида. Этот метод эффективен для чистого 81, в к-ром наблюдение поляризации люминесценции при О. о. затруднено из-за соотношения т т . Отказ от регистрации люминесценции позволяет использовать непрямые оптич. переходы с малыми квантовым выходом и коэф. поглощения. Это обеспечивает поляризацию ядерных спинов в объёме образца.  [c.438]

Внимательный визуальный осмотр является одним из распространенных МНК- Дефектами, которые можно наблюдать, являются разнооттеночность (следствие перегрева), посторонние включения, трещины, царапины, зазубрины, пузыри, апельсиновая корка — шероховатая фактура поверхности, точечная коррозия (питтинг), воздушные пузыри, поры, натеки связующего и непропитанные участки, пустоты и расслоения. Наблюдения могут проводиться с использованием различного освещения и приборов. Отраженный свет используется для определения дефектов на поверхности проходящий свет (если материал может быть просвечен) позволяет обнаруживать дефекты внутри образцов. Особенностью визуальных МНК является возможность обнаружения только сравнительно больших дефектов, которая зависит от квалификации контролера. Стандарт ASTM D2563-70 (Классификация визуальных дефектов в стеклопластиках и изделий из них) уточняет ряд деталей этого метода.  [c.468]


Микроскоп МБИ-6 — универсальный исследовательский прибор, предназначенный для проведения всевозможных работ как с прозрачными, так и с непрозрачными препаратами. Микроскоп позволяет изучать микропрепараты различными современными методами исследования визуальное наблюдение и фотографирование в проходящем свете в светлом поле при прямом и косом освещении, в темном поле, в поляризованном свете, с фазовым контрастом, а в отраженном свете — в светлом и темном полях. Такое многообразие методов наблюдения позволяет всесторонне изучить препарат, а также проводить быстрое и удобное фотографирование. Фотографирование может производиться с помощью пленочной фотокамеры либо на фотопластинку. Источником света служит лампа накаливания мощностью 170 вт.  [c.54]

В предыдущем разделе отмечалось, что голографирование объектов представляет собой полезное дополнение к фотограмметрии, и фотограмметрические методы определения координат точек можно применять для получения количественной информации на основании мнимого изображения объекта. Если объект либо слишком мал, либо слишком велик, чтобы можно было с достаточной степенью точности получить его контурную карту, то приходится прибегать к некоторому пересчету, который позволил бы сделать задачу удобной для извлечения информации, В частности, при больших размерах объекта его невозможно осветить когерентным светом, и необходимо производить некоторую промежуточную регистрацию данных. Эту промежуточную запись можно преобразовать в мнимое голографическое изображение, содержащее (с определенной субъективной точки наблюдения) информацию о рельефе поверхности объекта. В последние несколько лет был предложен ряд методов синтезирования трехмерных мнимых изображений, восстановленных с голограмм, на которых записаны изображения набора двумерных фотографий объекта. Такие голограммы можно отнести к классу составных. Кольер и др. [2] определили составную голограмму как совокупность небольших голограмм, расположенных в одной плоскости, причем каждая из них находится близко к соседней или перекрывается с ней. Волновые фронты, записанные на отдельных голограммах, не обязательно являются непрерывными или когерентными друг с другом. Однако при освещении восстанавливающим пучком одновременно всей такой голограммы, волновые фронты, записанные на отдельных небольших голограммах, взаимодействуют и образуют изображение, которое субъективно воспринимается как трехмерное. Варнер [101 дал хороший обзор этих методов. Дополнительную информацию по составным голограммам можно найти в 5.5. Как правило, эти методы были предложены в качестве новых средств записи и наблюдения стереоизображений или же как методы уменьшения информационной емкости, для того чтобы можно было передавать голограмму трехмерного изображения по электрическим каналам связи. Исключением являются голографические стереомодели, которые предназначаются для последующей обработки и синтезируются с выполнением определенных требований.  [c.684]

Для наблюдения на темном поле иногда еще и сейчас применяют метод Зидентопфа и Жигмонди. Этот метод, как показано на рис. 43, заключается в том, что в качестве микроконденсора применяют такой же микрообъектив, как и для наблюдения, но установленный к нему под углом в 90°. Однако светосила такой установки значительно уступает светосиле кардиоид-конденсора. Он удобен в тех случаях, когда необходимо одностороннее освещение, как, например, в случае исследования коллоидных растворов, протекающих через кювету значительных размеров. Такую кювету невозможно, конечно, установить на предметном столике микроскопа между конденсором и объективом.  [c.65]

Одной из основных задач при проектировании унифицированных моделей микроскопов является выявление основных их признаков и конструктивных особенностей, а также классификация приборов в отношении назначения. При разработке оптических систем такими определяющими признаками в микроскопах могут служить 1) методы наблюдения и освещения методы исследования объектов в проходящем свете, в отраженном свете, при смешанном освещении, в поляризованном свете и т. д. 2) длина визуального тубуса микроскопа (160 мм, 190 мм и оо) и применение в этом тубусе дополнительных оптических приспособлений 3) наличие в микроскопе фотографического, проекционного тубусов, а также других ветвей приемников световой энергии (ЭОПов, ФЭУ и т. д.) 4) осветительное устройство — встроенное или невстроен-ное, источник излучения, методы освещения (упрощенный, по Кёлеру и т. д.) 5) степень коррекции оптических систем применение ахроматических коллекторов, конденсоров, объективов-ахрома-тов, апохроматов, планобъективов и других оптических узлов.  [c.370]

Рассмотрим метод получения голографической топо-граммы объекта, носящий название метода двух источников. При ЭТОМ методе производится регистрация двухэкспозиционной голографической интерферограммы объекта по обычной схеме Лейта. За время между экспозициями освещающий пучок с плоским волновым фронтом поворачивают зеркалом на угол а, что фактически эквивалентно изменению положения источника освещения (рис. 42, а). Голографическая интерферограмма будет восстанавливать два изображения объекта, которые интерферируют между собой и вследствие наличия разности фаз на изображении возникнут интерференционные полосы, характер которых определяется формой поверхности объекта, а также углами между биссектрисой угла а и направлением наблюдения интерферограммы Я. Возникновение интерференционных полос можно объяснить еще и тем, что при повороте освещающего пучка в области их перекрытия возникает система интерференционных плоскостей А, которые пересекают изображение предмета параллельно биссектрисе угла а.  [c.104]

Для контроля качества таких перемещающихся предметов, как металлические прутки, ленты и листы, искусственные волокна, ткани и т. д., применяют метод, который основан на освещении поверхности испы ывае-мого объекта импульсами света, частота и продолжительность которых подбирается в зависимости от скорости перемещающегося предмета, вида поверхности и индивидуальных особенностей зрения наблюдающего. Установлено,, что при наблюдении в условиях непрерывного освещения невооруженным глазом или с помощью увеличивающих оптических устройств предметов, поверхность которых характеризуется нерегулярностью фрагментов. фактуры, эти нерегулярности смазываются и становятся невидимыми, а освещение световыми импульсами создает впечатление неподвижности, благодаря чему можно отчетливо наблюдать эти 11ерегулярности.  [c.92]

В настоящее время применяются различные методы исследо-ванря развития усталостного разрушения. Известен, например, метод, предусматривающий статическое доламывание образцов на различных стадиях развития трещины. Этот метод дает возможность исследовать закономерности убывания площади поперечного сечения образца по мере роста трещины, но требует испытания большого кoличe твa образцов [4]. Получили-распространение рентгеноскопические и электронноскопические методы с применением реплик и микрофотографии. Эти методы характеризуются достаточно высокой точностью, но требуют остановки машины для каждого наблюдения, что нарушает режим испытания и снижает точность получаемых результатов. Метод микрофотографии в сочетании со стробоскопическим освещением поверхности образца дает возможность не только фиксировать на фотопленке необходимые стадии разрушения, но и осуществлять визуальные наблюдения за ростом трещины без остановки машины [14, 16, 17].  [c.183]

Содержание кислорода в растворе целесообразно определять индиго-карминовым методом с точностью до 0,025 ла/л, а хлориды — нефело-метрическим методом с точностью до 0,06 мг л. Минимальный объем пробы на кислород 25 мл. При отборе проб в нагретом автоклаве раствор с помощью вентиля дроссилируется в охлажденную герметизированную емкость, откуда после конденсации пара он берется на анализ. Работающий автоклав пополняется новыми порциями раствора, которые подаются в него из дополнительной емкости через один из кранов точной регулировки. В этой емкости создается (путем нагрева раствора) давление, превышающее давление в автоклаве. Для измерения уровня жидкости в автоклаве к нему, подобно водомерному стеклу, приваривается трубка из нержавеющей стали, вдоль которой располагаются спаи термопар. Температура стенки трубки в зоне раствора отличается от температуры трубки в зоне пара. В связи с этим уровень жидкости в автоклаве можно определить с точностью до 3—5 мм. Для контроля и регулирования температуры целесообразно применять самопишущие приборы типа ПСР или ЭПД, а для контроля и регулирования давления — приборы типа ДСР в комплекте с дистанционным манометром МЭД. Автоклавы емкостью до 1,5 л нагреваются от комнатной температуры до 500 С за 3—4 час, охлаждаются за 6—7 час. Схема автоклава, позволяющего наблюдать за образцами в процессе испытания, представлена на рис. П-1. Одно из охлаждающихся колен предназначено для освещения образца, через другое колено производится наблюдение за образцами или его фотографирование.  [c.57]


МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]

Метод исследования был основан на том факте, что мельчайшие частицы, присутствующие обычно в большинстве жидкостей и невидимые при простом освещении даже под сильным мнркоскопом, становятся заметными при интенсивном освещении, если они рассматриваются на черном фоне. Техника наблюдения в упомянутой работе впоследствии была модифицирована, однако без существенных изменений в ее основе, и использована при изучении других задач, связанных с движением жидкости. В некоторых случаях для облегчения наблюдений в жидкость вводились мельчайшие частицы. Некоторые из этих исследований, в частности те, которые имеют отношение к пограничному слою, описаны в общих чертах в настоящей статье. Все исследования были проведены не с воздухом, а с водой, поскольку в воде при тех же самых числах Рейнольдса благодаря более медленному движению частиц облегчается наблюдение этих частиц, а также потому, что в случае воды легче подобрать подходящие частицы, чем для воздуха. Ранее для наблюдения за движением частиц использовались ультрамикроскопы, которые позже были переименованы в гидродинамические микроскопы. Строго говоря, ультрамикроскоп представляет собой прибор или, точнее, специальную осветительную систему с микроскопом для изучения Броуновского движения в жидкости. Принцип работы прибора основан на том факте, что частицы, имеющие размер меньше длины волны света, при прохождении через очень яркий пучок света рассеивают свет и их движение становится видимым под микроскопом. Установка, применяемая в данной работе, сходна с ультрамикроскопом, поскольку и в этом случае под микроскопом наблюдается движение частиц, пересекающих луч света. Однако наблюдаемые частицы имеют размер, больший, чем длина волны света, и скорость их движения, исключая область вблизи твердой  [c.119]

Микроскоп ММР 4 (рис. 1.8), Рабочий металлографический микроскоп ММР-4 предназначен для наблюдения и фотографирования микроструктуры металлов в светлом поле при прямо.м и косом освещении, темном поле, по-,тяризованном свете и методом фазового контраста.  [c.29]

Развитие современной техники и технологии немыслимо без самого широкого нспользованпя неразрушающих испытаний. В неразрушающих испытаниях пользуются физическими методами, которые не наносят материалу дополнительных повреждений. Таких методов существует очень много, но самьтй старый из ннх, один из лучп их и простейших — это визуальный, метод. Им пользуются в обувном магазине, когда рассматривают пару ботинок перед покупкой, и если освещение достаточно, то можно успешно обнаружить поверхностные дефекты. Этот метод незаменим для авиатехников — при подготовке самолета они должны тщательно осматривать шасси, поскольку острые камешки, вылетающпе из-под колес, могут повредить поверхность стоек. Последствия развития коррозионных трещин в условиях сильной влажности, больших перепадов температур и ударных нагрузок нетрудно себе представить. Если же необходимо обследовать недоступные для непосредственного наблюдения те или иные области изучаемого тела, 10 в наше время широко попользуется электронная микроскопия и волоконная оптика.  [c.199]

При наблюдении по методу темного поля после настройки освещения по Кёлеру следует нанести на конденсор каплю иммерсионной жидкости и установить его по высоте так, чтобы освещенное пятно на препарате было наименьшим. Наблюдая без окуляра выходной зрачок объектива, центрируют темный диск относительно выходного зрачка. Затем вставляют окуляр и проводят наблюдения.  [c.27]

Для исследований методом фазового контраста между микроскопом и фотокамерой вместо фототубуса устанавливается фазово-контрастное устройство, как это показано на фиг. 41. Фазовая пластинка устройства (одна для всех объективов) центрируется винтами 2. Визуальное наблюдение в этом случае производится через окуляр 3, который при настройке освещения заменяется вспомогательным микроскопом. Работа с фазово-контрастным устройством не требует применения специальных объективов. Фотографирование производится с помощью пленочной фотокамеры, которая укреплена на корпусе 1.  [c.85]


Смотреть страницы где упоминается термин Методы освещения и наблюдения : [c.541]    [c.160]    [c.841]    [c.356]    [c.353]    [c.418]    [c.46]   
Смотреть главы в:

Микроскопы, принадлежности к ним и лупы  -> Методы освещения и наблюдения



ПОИСК



Метод наблюдений

Наблюдение



© 2025 Mash-xxl.info Реклама на сайте