Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контраст фазовый

Метод контраста фазового 374  [c.509]

Метод фазового контраста  [c.361]

Рис. 15.12. Принцип метода фазового контраста. п — волны и ) в фазе б — волны 8 и О противоположны по фазе. Рис. 15.12. Принцип <a href="/info/36224">метода фазового контраста</a>. п — волны и ) в фазе б — волны 8 и О противоположны по фазе.

Микроскоп 329 —. метод темного поля 362 —, — фазового контраста 362 —, разрешающая способность 330, 348—357  [c.923]

Разница в высотах отдельных частей объекта составляет 10-50 А и в пространственных изображениях определяется методом фазового контраста. С его помощью обычно невидимые детали по поверхности улавливаются очень четко.  [c.223]

Протравленная поверхность шлифа обычно исследуется при вертикальном освещении (светлое поле) (рис. 3). Только в особых случаях применяют другое освещение, например темное поле, косое освещение, поляризованный свет или фазовый контраст .  [c.11]

Этот метод быстро внедряется в световую микроскопию (46—59]. Следует коротко сказать о принципе действия и указать на преимущества его применения для металлографических исследований. При методе фазового контраста (МФК), открытого Цернике [60] для просвечивающей микроскопии, необходимо создать разницу хода в /4 длины световой волны, т. е. разницу фаз в 90° преломленного луча по отношению к непреломленному. Это оказалось возможным благодаря применению стеклянной пластины, на которую наносят тонкий, сдвигающий фазу на 90° слой относительно прозрачного вещества. Фазовая пластинка влияет на открывание диафрагмы и изменяет картину дифракции так сильно, что в поле зрения вновь передается разница уровней (глубина резкости) при разной яркости освещения.  [c.14]

Более глубокие места объекта кажутся темнее (позитивный фазовый контраст) или светлее (негативный фазовый контраст), чем их окружение в зависимости от того, перекрывает или нет фазовый слой изображение диафрагмы.  [c.14]

С помощью оптического фазового контраста также удается получить четкую картину травления.  [c.143]

Современные достижения в области физических исследований металлов свидетельствуют о перспективности использования не только световой, но и электронной тепловой микроскопии, когда контраст изображения обусловлен не геометрическим профилем поверхности образца, а определенными характеристиками исследуемого материала, например, работой выхода электрона при термоэлектронной или фотоэмиссии кроме того, в качестве такой характеристики может быть использован коэффициент вторичной электронной эмиссии при бомбардировке первичными электронами. Эти характеристики существенно зависят от состава, фазового состояния, ориентации и температуры изучаемого объекта, поэтому, например, эмиссионная высокотемпературная микроскопия вследствие более высокой разрешающей способности обеспечивает получение большего объема информации по сравнению со световой тепловой микроскопией. При микроструктурном изучении процессов деформирования и разрушения принципиально новые результаты могут быть получены при использовании эффекта экзоэлектронной эмиссии, позволяющего количественно характеризовать определенное энергетическое состояние локальных участков исследуемого образца, что является весьма ценным дополнением к наблюдаемым в металлографический микроскоп качественным структурным изменениям, связанным с накоплением дефектов в поверхностных слоях материала.  [c.6]


Недостатком рассмотренного устройства является специфическая для данного зеркального объектива нечеткость передаваемого изображения вследствие технологической сложности выполнения высококачественной поверхности эллиптического зеркала. В последнее время в ЛОМО разработаны новые зеркально-линзовые объективы, позволившие создать весьма совершенные оптические системы, предназначенные для исследований методами тепловой микроскопии. В частности, при использовании объективов с рабочими расстояниями 32 и 17,2 мм и апертурами 0,4 и 0,65 получили оптическую систему, обеспечивающую наблюдение объекта в светлом поле, при косом освещении и методом фазового контраста.  [c.99]

Наблюдение в светлом поле при прямом освещении осуществляется с помощью объектива 7 или 8, полупрозрачной пластинки 9, ахроматической линзы 10 и окуляра 11. При использовании косого освещения смещают апертурную диафрагму 3 и в ход лучей включают объектив 7 или 8, полупрозрачную пластинку 9, ахроматическую линзу 10 и окуляр 11. Наблюдение с фазовым контрастом ведут при включенных линзах 25, 26, световом кольце 27 и фазовом кольце 28 ахроматическая линза 10 должна быть выведена из хода лучей. Для проверки совмещения фазового и светового колец в ход лучей включается линза 29. Контрастность изображения при всех видах работ повышают включением в ход лучей сменных светофильтров 80.  [c.101]

С помощью таких объективов можно осуществлять микроскопические исследования в светлом и темном полях, а также методами интерференционного и фазового контраста.  [c.106]

Оптическая система установок ВМС-1 и ВМД-1 обеспечивает возможность наблюдения образца в светлом поле, при косом освещении и методом фазового контраста.  [c.136]

Наряду со световой тепловой микроскопией интенсивно развивается аппаратурно-методическое обеспечение электронной тепловой микроскопии, в которой контраст изображения обусловлен не геометрическим профилем поверхности образца, а такими характеристиками материала, как работа выхода электронов при термоэлектронной или фотоэмиссии, коэффициент вторичной электронной эмиссии и т. д. Эти характеристики существенно зависят от состава, фазового состояния, ориентации и температуры изучаемого объекта. Высокая разрешающая способность этих методов обеспечит получение большого объема информации по сравнению с тепловой микроскопией.  [c.493]

Термин К. широко используется н в др. областях оптики. Фотографич. К.— разность наиб, и наим. оптич. плотностей =/ макс мин в цветном изображении — разность приведённых к серому поверхностных концентраций пурпурного и голубого красителя. К. интерференционной картины характеризует отношение разности яркостей в различных её точках к соответствующей разности, хода лучей. Цветовой К. служит характеристикой макс. различия в цветах объекта. Зрительный К.— особенность зрительного восприятия, в силу к-рой визуальная оценка наблюдаемого объекта меняется в зависимости от окружающего фона (т. н. одновременный контраст) либо от предыдущих зрительных впечатлений (последовательный контраст см. Иллюзии оптические). Понятие К. используется в методе фазового контраста, к-рый применяется для наблюдения прозрачных объектов и состоит в пропорциональном преобразовании разности фаз соседних частей пучка в разность интенсивностей.  [c.449]

Рис. 1. Микрофотографий жп-зых клеток печени мыши, полученные различными методами исследования а — светлое поле б — фазовый контраст — интерференционный контраст г — тёмное воле д — флуоресценция (окраска акридиновым оранжевым) — поляризованный свет м — ультрафиолетовые лучи. Рис. 1. Микрофотографий жп-зых клеток печени мыши, полученные различными <a href="/info/487762">методами исследования</a> а — <a href="/info/543790">светлое поле</a> б — фазовый контраст — <a href="/info/134918">интерференционный контраст</a> г — тёмное воле д — флуоресценция (окраска <a href="/info/342622">акридиновым оранжевым</a>) — поляризованный свет м — ультрафиолетовые лучи.
Рис. 5. Метод фазового контраста в проходящем свете 1 — апертурная диафрагма 2 — конденсор Рис. 5. <a href="/info/36224">Метод фазового контраста</a> в проходящем свете 1 — <a href="/info/14414">апертурная диафрагма</a> 2 — конденсор

Намного большая чувствительность к малым фазовым возмущениям достигается с помощью метода фазового контраста (метода Цернике). Прозрачный объект, являющийся источником возмущений, освещается идеальной плоской волной после его прохождения распределение комплексной амплитуды волны приобретает вид и о е , где (р — зависящие от поперечных координат фазовые отклонения, к-рые и подлежат регистрации. Транспарант представляет собой прозрачную пластинку с таким утолщением (либо выемкой) в малой при-осевой зоне, что между светом, проходящим через эту зону и через остальную часть сечения, создаётся разность хода Х./4.  [c.153]

Выявить микроструктуру паяного соединения можно химическим или электролитическим травлением с использованием фазового контраста, а также методом теплового травления. Существенным недостатком многих металлографических методов исследования является отсутствие количественной оценки результатов, что в некоторой степени восполняется расчетными методами и сочетанием микроанализа с другими методами (физическим, химическим и др.).  [c.311]

Измерение размеров кристаллитов (зерен) с использованием дифракции электронного пучка со специально приготовленной тонкой фольгой (или наночастицами) проводится с изменением контраста как в светлом поле (амплитудный контраст — см. рис. 2.1, е 2.2 2.16 2.20), так и в темном поле (фазовый контраст — см. рис. 2.7, а). Высокое разрещение позволяет также получить изображения атомных плоскостей (см. рис. 2.1, о 2.10 2.12 2.23 4.10) с характерной полосчатой структурой и выявлением дислокаций и других дефектов.  [c.184]

У зерен сыпучих веществ с помощью фазового контрастного метода можно определять преломление света даже в том случае, если вещество не однородно, а состоит из многих минералов. Высокая контрастность при таком методе объясняется тем, что частицы с большим светопреломлением, чем среда, темнее ее, а частицы с меньшим преломлением света светлее. Это относится к обычному позитивному фазовому контрасту. Если дисперсионная кривая иммерсионной жидкости, как это бывает в большинстве случаев, проходит круче, чем кривая для данного минерала, то при сближении светопреломления зерна и жидкости обе кривые пересекутся и тогда при освещении белым светом будет наблюдаться большее преломление для коротковолновой (синей) части спектра, чем для длинноволновой (красной) части. Вследствие этого при достаточном сближении показателей преломления минерала и иммерсионной жидкости частицы минерала видны как синеватые, в то время как жидкая среда окрашена в желтый или красный цвет. Это явление подробно исследовал Шмидт применительно к тонким пылям [15].  [c.25]

Значение предложенного Аббе метода оценки разрешающей силы микроскопа заключается также в том, что он открывает дополнительную возможность его применения любой волнистый рельеф можно рассматривать как некоторую фа.ювую решетку. Для наблюдения ее изображения нужно превратить такую фазовую решетку з амплитудную, т.е п систему светлых и темных полос. В теории фазовой решетки доказывается, что это можно сделать, если уменьшить или увеличить на п/2 разность фаз между волнами, ответственными за нулевой спектр и спектры высших порядков. Цернике указал, что для этого достаточно внести тонкую стеклянную пластинку в фокальную плоскость объектива микроскопа. На область в центре такой пластинки, где локализован максимум нулевого порядка, наносится тонкий прозрачный слой, который изменяет на п/2 фазу волны, распространяющейся в направлении только этого спектра. Для осуществления такого изменения фазы глой вещества с показателем преломления п должен иметь толщину ./4(п — 1). Этот метод, получивший название фазового контраста, позволяет исследовать очень нечеткие структуры и играет большую роль в различных приложениях.  [c.344]

Описанный метод улучшения контрастности изображения прозрачных объектов получил название метода фазового /(онтраспш (Цернике, 1935 г.). Микроскопы, использующие метод фазового контраста, выпускаются промышленностью и широко применяются в биологических исследованиях.  [c.366]

В РЭМ различают два вида контраста изображения - т о п о -графический и композиционный [73]. Топографический контраст изображения определяется изменением интенсивности вторичной электронной эмиссии в зависимости от положения элемента поверхности по отношению к пучку электронов. Композиционный контраст изображения образцов сложного фазового состава обусловлен раз-лнчными значеннями коэффициента вторичной электронной эмиссии.  [c.152]

В ряде процессов (релаксация полимеров, процессы диффузии и т. п.) необходимо оценить изменение подвижности и средний размер частей, составляющих среду, в различные моменты времени. Если эти процессы протекают медленно (1 — 10 с), то единственным способом контроля является метод голографической коррелометрии (МГК), который основан на получении с помощью двулучевой схемы голограммы рассеивающей среды в отраженном свете (при одностороннем доступе). Направление освещения между экспозициями меняется на угол 0, что вызывает регулярный фазовый сдвиг Дфо на элементах рассеивателя и появление в изображении системы эквидистантных интерференционных полос. Так как состояние среды за время т между экспозициями изменится, уменьшится контраст полос. Случайный сдвиг фазы отдельной частицы Дф (G, т) = к Дг (т), где О — угол между направлениями падающей и рассеянной волн Дг — вектор сме-, 2я  [c.114]

В качестве квазиоптическон системы в интросконе используют специально разработанные объективы миллиметрового диапазона. Прибор может работать по методам светового поля, темного поля и фазового контраста.  [c.242]


Микроскопические методы обычно применимы для исследования состояния поверхности металла. С этой целью используется бинокулярный микроскоп, воспроизводящий объемную картину поверхности. При этом применяются светло-, темно- и косопольное освещение, фазовый контраст, а также поляризованный свет и ультрафиолетовые лучи.  [c.223]

Рис. 7. Структура хромистой стали с выделившейся (1-фазой, полученная методом позитивного фазового контраста (нетравленый лиф). Х500 Рис. 7. <a href="/info/71018">Структура хромистой</a> стали с выделившейся (1-фазой, <a href="/info/473555">полученная методом</a> <a href="/info/368934">позитивного фазового контраста</a> (нетравленый лиф). Х500
Нетравленый шлиф стали, "содержащей, % С 0,07 Сг 27 Мо 2 и отпущенной при 650° С в течение 1000 ч, исследуют методом оптического фазового контраста или с помощью травителя 107в. При этом карбиды сильно вытравливаются, в то время как ст-фаза вследствие легкого подтравливания располагается ниже ферритной матрицы. При термическом травлении при 500° С в течение 5 мин карбид темнеет, феррит окрашивается в цвета от желтого до коричневого, а ст-фаза остается светлой. Этим методом выявляют обедненные хромом области вокруг карбидов и ст-фазу по различию в степени потемнения. Термическое травление позволяет также определять размеры карбидных частиц. Карбиды по границам зерен остаются светлыми, если их размер не превышает определенную величину. Аустенит имеет желто-коричневый цвет, приграничные области зерен, особенно вблизи мельчайших карбидов, окрашиваются в цвета от коричневого до фиолетового (вследствие обеднения легирующими элементами).  [c.142]

Перед каждым актом микротомирования при положении II (см. рис. 2, а) образца (5) на его торец наносят 0,02—0,03 мл дважды перегнанной воды. После микротомирования каплю с частицами снятого слоя переносят на предметное стекло и после испарения воды определяют показатель преломления частиц под микроскопом иммерсионным методом или с помощью фазового контраста [10]. Откладывая определяемое таким образом значение показателя преломления против координаты средней точки слоя, получают график зависимости оптической плотности п диффузионной среды от расстояния X до контактной поверхности, который удовлетворительно коррелирует с результатами исследования другими методами физико-химического анализа.  [c.214]

Современные достижения в области физических исследований металлов свидетельствуют о перспективности использования не только световой, но и электронной тепловой микроскопии, когда контраст изображения обус-словлен не геометрическим профилем поверхности образца, а определенными характеристиками материала, например работой выхода электрона при термоэлектронной эмиссии или фотоэмиссии кроме того, в качестве такой характеристики может быть использован коэффициент вторичной электронной эмиссии при бомбардировке первичными электронами. Эти характеристики существенно зависят от состава, фазового состояния, ориентации и темпера-10 туры изучаемого объекта, поэтому, например, эмиссионная высокотемпера-  [c.10]

МЕТОД <фазового контраста используют для получения изображений микроскопических объектов, основан на регистрации различий в сдвиге фаз разных участков световой волны нри ее прохождении через эти объекты Юнга служит Ц1Я осуществления интерференции света с помощью двух 3KpaffOB, в первом из которых расположена ярко освещенная узкая щель, а во втором две одинаковые узкие щели,  [c.248]

При прямом освещении в микроскопе видны пылинки размером 0,4 мкм и более, а при косом освещении — 0,2 мкм. Предел видимости в темном поле — до 0,06 мкм [ 60]. Подсчет пылинок методом фазового контраста в счетчиках Оуэнса позволяет фиксировать частицы размером до 0,02 мкм. Особо высоким разрешением обладают электронные микроскопы. Поскольку линейные измерения связаны с идентификацией положения и расстояния точек поверхностей, то допускаемую объемную загрязненность воздуха твердыми частицами можно, в частности, определять через нормы запыленности измеряемой поверхности. При контактных измерениях положение точек измерения оценивается с разрешением порядка 1. .. 2 мм (кроме специальных задач), откуда допускаемое число частиц пыли Nan нормируемых размеров а  [c.97]

Атмосфера М. разреженная, давление у поверхности в зависимости от рельефа изменяется от 0,18 до 1 1сПа. За ср. давление, примерно соответствующее давлению на поверхности ср. уровни (от этого уровня отсчитывают высоту гор и глубину впадин), принято давление в тройной точке на фазовой диаграмме воды (0,61 кИа). Состав атмосферы (%, по объёму) СОз — 95 N2 — 2,7 Аг — 1,6 О2 — 0,15. Содержание водяного пара очень низкое и испытывает заметные суточно-сезонные колебания от менее 1 мкм осаждённой воды в зимнем полушарии до почти 100 мкм осаждённой воды над полярной шапкой летом. Обнаружены отд. районы ловыш. влажности в ср. широтах, а также небольшое кол-во озона, практически не влияющее на ослабление интенсивной солнечной УФ-радиации, проникающей сквозь разреженную атмосферу М. до поверхности. Ср. теми-ра у поверхности близка к эффективной, днём темп-ра поверхности выше, ночью ниже, чем темп-ра атмосферы. Суточно-сезонные вариации темп-ры составляют 100—150 К, мивим. темп-ра на полярных шапках зимой опускается ниже темп-ры конденсации СО2 (148 К при 0,61 кПа). Из-за больших температурных контрастов на поверхности и малой плотности атмосфера М. очень динамична, скорости ветра достигают неск. десятков м/с, а во время пылевых бурь 80—100 м/с. Периоды глобальных пылевых бурь обычно совпадают с противостояниями М. Облака пыли поднимаются да высот 10 км, почти полностью сглаживая температурные контрасты на поверхности. Распределение  [c.48]

При записи оптич. информации в двухслойной структуре воздействие светового сигнала приводит к стеканию части поверхностного заряда на подложку (тем большему, чем больше освеп1ённостъ данного микроучастка поверхности) в трёхслойной структуре, напротив, заряд противоположного знака переходит с подложки на граничащую с запоминающим слоем поверхность фотополупроводника. В обоих типах структур м.-статич. силы притяжения разноимённых зарядов деформируют поверхность мягкого запоминающего слоя (либо сразу, либо после его нагревания—т, п, теплового проявления), образуя рельеф, в к-ром распределение глубины соответствует распределению потока излучения по поверхности, т. е. в получаемом рельефе кодируется оптич. информация. При считывании записанной информации различия толщины рельефа вызывают разл. изменения фазы считывающей световой волны. Фазовые различия не воспринимаются глазом и др. приёмниками оптич. излучения. Поэтому их преобразуют в изменения амплитуды световой волны (т. е. интенсивности считывающего пучка), к-рые регистрируются приёмниками излучения (включая глаз). Такое преобразование осуществляют гл. обр. теневым методом, но в принципе его можно сделать по аналогии е методом фазового контраста в микроскопии.  [c.266]

ФАЗОВЫЙ КОНТРАСТ — метод получения изображений микроскопич. объектов, основанный на регистрации различий в сдвигах фазы разных участков световой волны, проходящей через эти объекты, Ф, к, применяется в тех случаях, когда погмигательная способность и показатель преломления разл. элементов рассматриваемой структуры настолько близки, что при обычных методах наблюдения и получения изображений по поглощениго и рассеянию эти элементы оказываются неразличимыми. Вместе с тем сдвиги фаз, вносимые такими элементами, могут заметно отличаться, образуя фазовый рельеф проходящей световой волны. Для визуализации или регистрации с помощью фотоприёмников фазовый рельеф сначала преобразуется вспомогательными оптич. устройствами в изменение интенсивностей (амплитуд) разл. участков световой волны, т. н. амплитудный рельеф.  [c.271]


Аморфные и квазиаморфные тела, размеры частиц к-рых меньше разрешаемого в электронном микроскопе расстояния, рассеивают электроны диффузно. Для их исследования используются простейшие методы амплитудной Э. м. Напр., в ПЭМ контраст изображения, т. е. перепад яркостей изображения соседних участков объекта, в первом приближении пропорционален перепаду толщин этих участков. Для расчёта контраста изображений кристаллич. тел и решения обратной задачи—расчёта структуры объекта по наблюдаемому изображению—привлекаются методы фазовой Э. м. решается задача о дифракции электронов на кристаллич. решётке. При этом дополнительно учитываются неупругие взаимодействия электронов с объектом рассеяние на плазмонах, фононах и т. п, В ПЭМ и растровых ПЭМ (ПРЭМ) высокого разрешения получают изображения отд. молекул или атомов тяжёлых элементов пользуясь методами фазовой Э. м., восстанавливают по изображениям трёхмерную структуру кристаллов и биол. макромолекул. Для решения подобных задач применяют, в частности, методы голографии, а расчёты производят на ЭВМ.  [c.550]


Смотреть страницы где упоминается термин Контраст фазовый : [c.50]    [c.153]    [c.7]    [c.335]    [c.276]    [c.146]    [c.146]    [c.301]    [c.548]    [c.575]    [c.130]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.27 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.50 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте