Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы определения погрешностей

Глава 11. МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТЕЙ МЕХАНИЗМА  [c.109]

Функция положения механизма. Наиболее общим методом определения погрешности механизма является дифференциальный метод. Сущность его заключается в составлении уравнения (функция положения механизма), где положение ведомого звена механизма 5 выражено как функция некоторых параметров координат ведущего звена—размеров—положений звеньев — и т. п.  [c.109]


Изложенный метод определения погрешностей применим и для плоских механизмов с высшими кинематическими парами. На рис. 1.71, например, определена погрешность положения плоского кулачкового механизма, возникшая из-за погрешностей поверхности кулачка Арк и радиуса ролика Аг. Отрезок ДЗд = - на плане малых перемещений будет погрешностью (в масштабе (Ад)  [c.113]

Графоаналитический метод определения погрешности положения. Погрешностью положения механизма называется разница в положении ведомых звеньев действительного и соответствующего теоретического механизмов при одинаковых положениях их ведущих звеньев.  [c.225]

Аналитический метод определения погрешности положения шарнирного четырехзвенника. Найдем погрешность положения звена механизма, происходящую от неточности размеров звеньев  [c.227]

Существует несколько методов определения погрешностей деления лимбов. Некоторые из них мы приведем.  [c.24]

Для разделения профиля шероховатости на систематическую и случайную составляющие и оценки их параметров целесообразно использовать ЭВМ, что позволяет увеличить точность оценки параметров шерохо- ватости и сократить трудоемкость вычисления. Использование ЭВМ сокращает время до 15—20 мин на определение оценок всех стандартных параметров шероховатости и их полных погрешностей для любого конкретного профиля поверхности, а применение аналитического метода определения погрешностей оценок параметров щероховатости позволяет измерять их с заданной точностью. Применение ЭВМ дает возможность автоматизировать процесс измерения щероховатости поверхности и осуществлять автоматическую оптимизацию режимов резания в зависимости от условий обработки [93].  [c.57]

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТЕЙ  [c.56]

С точки зрения современных задач измерений представляется целесообразным более четко сформулировать определения лабораторные и технические. Прежде всего, какова цель такой классификации Из многолетнего опыта измерений следует, что общие методы определений погрешностей измерений не всегда одинаковы. Для разработки конкретных методов оценивания погрешностей измерений, обработки результатов измерений с целью повышения точности измерений и т. п. целесообразно разделить изм.ере-ния на такие общие группы, для каждой из которых принципы, подходы к оцениванию погрешностей были бы одинаковыми. Это — цель данной классификации. Для каждой из соответствующих групп измерений можно тогда разрабатывать и исследовать некоторые свои, общие для данной групы, принципы оценивания погрешностей измерений. Именно по этому признаку измерения разделены на лабораторные и технические.  [c.36]


Контроль отклонения окружного шага. Под отклонением окружного шага понимается разность действительного и среднего значений окружного шага по окружности, проходящей в средней части по длине и высоте зуба с центром на оси вращения колеса. Другими словами для степеней точности 5—7-й нормируется отклонение от номинальной величины окружного шага по окружности измерения. Отклонение этого параметра колеса близко по своему действию к влиянию основного шага у цилиндрических колес. В конических колесах нет возможности нормировать погрешность основного шага, поскольку применяемое зацепление не является эвольвентным. Контроль отклонений окружного шага от номинального значения не требует знания действительной величины радиуса окружности, по которой осуществляется измерение. Объясняется это тем, что поскольку относительные измерения всех окружных шагов замыкаются, то сумма ошибок окружного шага по всему венцу равна нулю. Отсюда возникает простой метод определения погрешности окружного шага по результатам измерения равномерности окружного шага. Определение производится в следующей последовательности  [c.540]

Статистический метод определения погрешностей обработки достаточно полно освещен в трудах по технологии машиностроения и в специальной литературе, поэтому ограничимся лишь кратким изложением сущности метода, основанного на наблюдениях результатов обработки деталей машин, проводимых в производственных условиях.  [c.35]

При статистических методах определения погрешностей обработки условно различают так называемые случайные погрешности и систематические погрешности.  [c.35]

На рис. 43, в показан метод определения погрешности, направления зубьев конического колеса с помощью игл.  [c.100]

При аналитическом методе определения погрешности схемы используют формулы (6.19) и (6.20), в которые вместо выходного сигнала ставят функцию преобразования типа (6.1), содержащую значение входного сигнала и номинальные значения параметров функции преобразования. В качестве идеальной функции, если нет специальных требований, берется линейная зависимость, обеспечивающая линейную шкалу прибора, постоянный коэффициент преобразования преобразователя и другие идеальные свойства приборного устройства.  [c.134]

ДИФФЕРЕНЦИАЛЬНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТЕЙ  [c.182]

Сущность метода определения погрешности отбора проб от отдельной партии топлива, качество которого неизвестно (а именно за такую партию следует принимать топливо, сжигаемое во время балансовых, приемочных испытаний, испытаний по определению нормативной характеристики котла, при опытном сжигании нового топлива на данной ТЭС, данном типе котла), основана на вычислении диапазона между наибольшим и наименьшим значениями показателя качества не менее шести объединенных проб в сравнении с требуемой погрешностью отбора проб. Следовательно, если для этой цели использовать пробы, отобранные в основных опытах, то при негативном результате можно тем самым обесценить испытания. Таким образом, определение погрешности необходимо выполнять во время предварительных опытов, что дает возможность уточнить необходимое количество отбираемых точечных проб в первичную объединенную пробу в соответствии с рекомендациями [74, 7Й]. В такой же мере сказанное относится к определению систематической погрешности отбора проб топлива по результатам анализа 20 проб и погрешности подготовки проб по материалам анализа 10 объ-  [c.117]

СТ СЭВ 4384-83. Топливо твердое. Методы определения погрешности отбора и подготовки проб.  [c.409]

Истинное значение величины определить невозможно, так как не существует средств измерения, которые не имеют погрешностей. Поэтому на практике вместо истинного значения принимают величину, полученную измерением средствами с высокой точностью, а также используют вероятностные методы определения погрешностей.  [c.70]

Обеспечение единства И. в стране возлагается на метрологическую службу, поддерживающую такое состояние И., при к-ром их результаты выражены в узаконенных ед. и погрешности И. известны с заданной вероятностью. В число мероприятий по обеспечению единства И. входят хранение эталонов ед., поверка применяемых средств И., разработка методов определения погрешностей И. и т. д. Всё большее применение получают аттестация и стандартизация методик выполнения И. (ГОСТ 8.010—72), в т. ч. государственная стандартизация (ГОСТы 8.346—79, 8.361—79, 8.377—80 и др.). Способы представления результатов И. и показатели точности И. регламентированы в ГОСТе 8.011—72.  [c.208]


Определение погрешностей обработки методом математической статистики  [c.65]

Магнитоупругий метод определения остаточных напряжений основан на зависимости магнитной проницаемости объема металла от значения действующего в данном объеме остаточного напряжения. Этот метод можно использовать лишь для металлов, обладающих магнитными свойствами. Достоверные результаты получают при измерении остаточных одноосных напряжений в основном металле сварного соединения. Применение этого метода для определения остаточных напряжений в шве и околошовной зоне может приводить к заметным погрешностям. Это объясняется тем, что магнитная проницаемость в шве и околошовной зоне после сварки изменяется по сравнению с ее значением до сварки не только под действием возникших остаточных напряжений, но и вследствие изменения химического состава шва, роста зерна, изменения структуры околошовной зоны и других явлений.  [c.424]

Ультразвуковой метод определения сварочных остаточных напряжений основан на зависимости скорости распространения ультразвуковой волны в металлах от напряженного состояния в них. Измеряют скорости распространения ультразвука на отдельном участке металла до сварки и после сварки, и по изменению скорости судят о значении остаточного напряжения. При измерении остаточных напряжений в шве и околошовной зоне неоднородность свойств может приводить к погрешностям результатов. Положительным свойством данного метода, так же как магнитоупругого, следует считать мобильность проведения экспериментов, не требующих больших подготовительных работ.  [c.424]

Для определения погрешностей положения из-за упругих деформаций звеньев механизма обычно используют дифференциальный метод, который рассматривает функции положения механизма 8 =/(171, <72. . 7п) в зависимости от переменных ее определяющих. Приращения переменных в первом приближении  [c.300]

Это уравнение является основой метода определения летучести. Пусть известна изотерма реального газа I—2 (рис. 69) до таких давлений ро, когда в пределах погрешности опыта поведения реального и идеального газов заметно не отличаются. Рассмотрим в некотором интервале давлений изотермы v(p) реального и идеального газов.  [c.353]

Целью обратной задачи является определение погрешностей величин-аргументов, если известны погрешность функции и вид функциональной зависимости (2.24). Необходимость в решении таких задач возникает при выборе того или иного комплекта измерительной аппаратуры или метода определения искомой величины, позволяющих найти значение этой величины с определенной погрешностью.  [c.47]

В первом случае проблем не возникает и поставленная задача имеет решение. Во втором случае прежде всего следует попытаться выйти из создавшегося положения путем увеличения погрешности тех аргументов, у которых оказалось невозможным обеспечить требуемую первоначально точность измерений при одновременном уменьшении погрешностей остальных аргументов. Если этот путь не дает приемлемых результатов, то остается один выход, связанный с поиском другого метода определения величины У. Этот выход является единственно возможным и для случая, когда значения погрешностей всех аргументов настолько малы, что обеспечить требуемую их точность с помощью имеющихся средств измерений не представляется возможным. При выборе другого метода измерений меняется вид функции <р, а следовательно, меняются аргументы и значения их погрешностей, позволяющих обеспечить требуемую точность определения величины У.  [c.48]

В рассмотренном выше случае сигналы от нитей, имеющие одинаковый порядок, обрабатываются не одновременно, в связи с чем возрастает погрешность измерения. Более предпочтительным является метод определения среднеквадратичных пульсаций с помощью двухканального термоанемометра. В этом случае используют двухниточные зонды со скрещенными нитями (рис. 13.3), ими-9 9 9 .9 тирующими положения / и // в  [c.260]

Существенным недостатком этого метода являются погрешности решения обратной задачи. Даже при сглаживании исходных данных эти погрешности больше, чем такие же погрешности в случае решения обратных задач с регуляризацией. Тем не менее методом подбора можно получить вполне приемлемые по точности результаты, несмотря на значительные погрешности исходных данных. Так, в задачах определения тепловых потоков при закалке в жидких средах при погрешностях в экспериментальной температуре, доходящих до 10 К (диапазон температуры в задаче 300—1473 К), без сглаживания и регуляризации можно определять тепловые потоки с погрешностью, не превышающей 20 7о-  [c.286]

Пользуясь изложенным здесь графо-аналитическим методом определения виражной погрешности одноосного гиростабилизатора со слабым разгрузочным двигателем, можно построить зависимость а = / (ф) и для последующих витков виража. Нетрудно заметить, что при после-  [c.407]

Теоретической основой стационарных методов определения теплопроводности, изложенных в Практикуме, являются решения одномерных задач теплопроводности без внутренних источников теплоты для пластины, цилиндра и шара (см. п. 1.3.2). В экспериментах измеряют тепловой поток, температуры на поверхностях образца, размеры (толщину, внутренний и внешний диаметры). Далее по формулам п. 1.3.2 вычисляют теплопроводность. Для исключения методических погрешностей необходимо позаботиться, чтобы в эксперименте были реализованы условия, при которых получены соответствующие теоретические решения.  [c.125]

Если эти вычисления, так же как и вычисление полярных координат профиля, проводятся на ЭВМ, то погрешность, допущенная при упрощенном графическом методе определения начального радиуса, может быть легко выявлена. Упрощенный графический метод позволяет находить основные размеры кулачка без построения диаграмм в координатах перемещение — аналог скорости.  [c.126]


Рис. 1.73. К определению погрешностей методом планов малых перемещений. Рис. 1.73. К определению погрешностей методом планов малых перемещений.
T. e. значение S (t) численно равно площади, ограниченной осью ординат кривой собственных затухающих колебаний, полученной из эксперимента йри начальных условиях t = О, = 0, Xq = 1/ЛГп и осью абсцисс (рис. 9). Заметим, что значение Хц может быть взято и иным (Хц = PjKn)r но. тогда необходимо учесть соответствующий масштаб. Отсюда следует простой графоаналитический метод определения погрешностей (см. формулу (37)).  [c.172]

Более глубокое изучение рассматриваемого круга вопросов требует не только определения наилучшего решения задачи оптимизации теплоэнергетической установки, но и анализа возможных отклонений от полученного решения. В связи с этим большое значение приобретает разработка методов определения погрешностей построения и реализации математических моделей теплоэнергетических установок. Основными видами погрешностей, наряду с погрешностью эквивалентирования, являются погрешности используемых исходных данных, аппроксимации исходных зависимостей, решения системы балансовых уравнений и расчета функции цели. Анализ результирующей погрешности построения и реализации математической модели теплоэнергетической установки позволяет судить об оптимальности созданной модели.  [c.9]

В мелкосерийном и тем более индивидуальном производстве условия для выполнения статистических обследований и установления нормативов точности операций статистическим путем менее благоприятны. Здесь можно говорить только о нормативах точности для типовых операций. Произведя многочисленные исследования на различных заводах и обрабатывая их с применением методов математической статистики, можно путем обобщения полученных разультатов разработать такие нормативы, которые все же будут значительно более обоснованы, чем обычно приводимые в литературе. Еще лучшие результаты можно получить, комбинируя статистический метод определения погрешностей обработки с расчетным.  [c.185]

В последние годы возник большой интерес к методам измерения, в которых используется избыточная информация, содержащаяся в спектре излучения нагретых тел. Принцип новых методов основан на утверждении, что если излучательная способность материала пропорциональна длине волны в степени п, то температура может быть получена из относительных измерений спектральной яркости при п + 2 длинах волн. Для п = 0 мы имеем случай двухцветного пирометра или пирометра отношения, в котором излучате,тьная способность не зависит от длины волны. Если п= и излучательная способность с длиной волны меняется линейно, требуется три длины волны. Проблема с двухцветным пирометром, как было показано, состоит в том, что для равенства излучательной способности при двух длинах волн на практике длины волн должны быть расположены рядом. С другой стороны, легко показать, что чувствительность при увеличении расстояния между длинами волн увеличивается. Подобный анализ для трехцветного пирометра показывает, что даже небольшие отличия от предполагаемого линейного соотношения между излучательной способностью и длиной волны могут приводить к большим погрешностям. Свет [81], однако, отметил, что при использовании современных компьютеров метод определения истинной температуры из измерений при т длинах волн на основе предположения, что излучательная способность является функцией п-й степени от длины волны и т>п, имеет ряд преимуществ. Они состоят в том, что избыточная информация, содержащаяся в [т—(п = 2)] измерениях, должна компенсировать недостаток точности в измерениях относительной яркости при т длинах волн. Трудности достижения высокой точности были показаны в работе Коатса [26], где был сделан вывод, что ни один из этих методов, по-видпмому, не приводит к большей точности опреде.ле-ния Т, чем точность, достигаемая пирометром на одной длине волны с использованием известной величины излучательной способности.  [c.392]

Обобщепкой характеристикой средства измерении, определяемой пределами основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерения, является класс точности средства измерений (ГОСТ 8.401—80). Класс точности характеризует свойства средства намерения, но не является показателем точности выполненных измерений, поскольку при определении погрешности измерения необходимо учитывать погрешности метода, настройки и др.  [c.115]

При проектировании защиты реактора пользуются разными методами расчета, различающимися как трудоемкостью, так и точностью. Строгое решение задачи возможно лишь с помощью последовательного решения уравнений переноса нейтронов и у-квантов. Однако эти уравнения достаточно точно удается решить лишь для достаточно простых геометрических конфигураций активной зоны и защиты, в основном одномерных (см. гл. IV). Поэтому в практических расчетах. защиты реакторов наряду с решением уравнений переноса излучения применяют н различные приближенные методы, которые можно разбить на две группы полуэмпирнческие, основанные на использовании экспериментальных или теоретических данных, и методы, использующие низкие приближения уравнения переноса. На основе этих приближенных методов в ряде случаев удается проводить практические расчеты даже вручную, и, кроме того, их можно довольно просто реализовать на ЭВМ. Достаточно строгое решение уравнения переноса в основном используется для определения погрешности приближенных методов и при проведении расчетов для самых ответственных направлений, где это позволяют геометрические условия задачи.  [c.48]

Наиболее общий метод определения ошибок механизма — это дифференциальный метод, в котором ошибка положения механизма определяется как полный дифференциал функции положения, а приращения переменных этой функции рассматриваются как погрешности. Функция положения при этом может задаваться как в явном, так и в неявном виде (системой уравнений, тригонометрическими соотношениями и т. п.). Неявный способ задания функции при оценке ошибок более удобен в случаях, когда функция положения представляет гро-мо.здкое выражение, например в механизмах с низшими кинематическими парами.  [c.336]

Отметим, что, если даже допущения Кока неверны, одно это обстоятельство не может привести к расхождению ме кду калориметрическими и магнитными зпаче1п1ямн у, если применяются только формулы (33.8) и (33.2). Действительно, при выводе последних формул допущения, сделанные Коком, никак не пспользовалпсь. Впрочем, как уже отмечалось, при таком методе определения у трудности, связанные с измерением критических полей прп очень низких температурах, могут приводить к значительным погрешностям. Поэтому для сравпершя магнитного и калориметрического аспектов нашего термодинамического рассмотрен]ш лучше всего непосредственно воспользоваться формулой (32.4), поскольку при выводе ее не делается никаких специальных допущений п величины (Лб )гоИ ( /7кр./ 7 )т очень просто определяются. Шенберг [22] составил таблицу данных, необходимых для такого сравнения. Во всех случаях, когда имеются обе системы достаточно надежных данных, согласие между ними оказывается превосходным.  [c.365]


Дополнительную систематическую погрешность вносит также несовершенство метода измерения. Для примера рассмотрим определение массы образца взвешиванием его на аналитических весах. Если взвешивание проводить уравновешиванием образца, находящегося на одной чаше весов, разновесами на другой чаше, то такой метод вносит погрешность, связанную с неравноплечными весами. При взвешивании необходимо вводить поправку на различие выталкивающих сил (сил Архимеда) образца и разновесов. Для введения такой поправки требуется знание плотностей образца, разновесов и воздз ха. Если какие-то из перечисленных факторов игнорируются, появляется систематическая составляющая погрешности. Иногда эту составляющую МОЖНО уменьшить введением соответствующих поправок на измеряемую величину, но некоторые из них до конца исключить не удается. В рассмотренном примере для исключения влияния неравноплечных весов используют метод Д. И. Менделеева и вводят поправку на выталкивающую силу. Правда, полностью исключить погрешность, связанную с выталкивающей силой, невозможно, так как она рассчитывается не точно.  [c.177]


Смотреть страницы где упоминается термин Методы определения погрешностей : [c.88]    [c.108]    [c.212]    [c.135]    [c.310]   
Смотреть главы в:

Теория механизмов и детали точных приборов  -> Методы определения погрешностей



ПОИСК



Безрукова Е. Н., Сергеев О. А. Систематические погрешности при определении теплопроводности металлов методом Кольрауша

Дифференциальный метод определения погрешностей

Измерения — Методы 62, 87, 93 — Определение длин — Погрешности предельные

Измерения — Методы 62, 87, 93 — Определение углов и конусов — Погрешности предельные

Методы анализа систем, их расчленение и упрощение для определения динамических нагрузок. Значения допускаемых погрешностей

Методы определения погрешностей механизма Дифференциальный метод

Определение погрешностей

Определение погрешностей обработки методом математической статистики

Определение суммарной погрешности при обработке методом пробных проходов

Погрешности и методы определения точности резьбовых деталей

Погрешности — Определение расчетноаналитическим методом — Пример

Погрешность звена, метод определения

Солодова. Исследование погрешностей определения электрических свойств жидкостей емкостным бесконтактным методом

Сравнение погрешностей методов определения железа в станционных водах, Ю. В. Зенкевич, Секретарь, М. Б. Рабкина



© 2025 Mash-xxl.info Реклама на сайте