Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изображение голографическое

ГОЭ можно рассматривать как запись оптической интерференционной картины, такой, что в каждой точке регистрирующего материала поверхность интерференционных полос является зеркальной и отражает входной луч в выходной. Такой подход справедлив только для частной пары сопряженных волн, для которых рассчитывается ГОЭ. Подход полезен тем, что позволяет найти поверхностную решетку, которая действительно определяет геометрию формирования изображения голографическими элементами. Эта поверхностная решетка представляет собой геометрическое место точек, в которых пересекаются зеркальные интерференционные плоскости с поверхностью материала, на котором записывается голограмма. Чтобы быть точными, это поверхность регистрирующего материала, из которой выходят преобразованные или дифрагированные волны. Поверхностная решетка плоской и объемной голограмм полностью определяет изображающую геометрию, т. е. положение изображения, аберрации, увеличение и т. п., какой бы волновой фронт ни преобразовывался ГОЭ. (К счастью, на эффективность ГОЭ, т. е. на амплитуду преобразованного волнового фронта, оказывают влияние другие факторы.)  [c.635]


Для передачи изображения голографическим экраном, представляющим собой фокусирующее множительное зеркало, для каждой зоны видения справедливо соотношение  [c.258]

Еще раз отметим, что при восстановлении изображения от объемной голограммы ее необходимо осветить пучком света той же длины волны и под тем же углом, что и при голографической записи. Это свойство голографирования позволяет в одну и ту же фотопластинку записать изображение многочисленных предметов одновременно без помех друг другу. При этом очевидно, что опорные лучи при  [c.219]

Описанные выше явления получили интересные применения для голографической регистрации изображения (см. 65).  [c.119]

Рис. 11.8. Голографические изображения, полученные для разных направлений наблюдения. Рис. 11.8. Голографические изображения, полученные для разных направлений наблюдения.
Обратимся к вопросу об увеличении голографического изображения. Сместим точечный предмет параллельно плоскости голограммы на величину Ар . Изображения 5 и 5" также сместятся, причем смещения эти, согласно формулам (61.6) и (61.8), равны  [c.250]

К такому же результату мы придем и в том случае, если под Ар,, Арх, Ар, будем понимать векторы, соединяющие соответственно две точки предмета и их изображений. Коэффициенты пропорциональности в соотношениях (61.9) называются поперечными увеличениями V и V" голографической системы  [c.250]

Таким образом, можно получить увеличенное голографическое изображение, подобное объекту в это.м случае длина просвечивающей волны должна быть больше, чем предметной и опорной.  [c.251]

Здесь 2. (расстояния от изображения и объекта до линзы, точнее, до ее главных плоскостей) аналогичны г , rs. Показатели преломлений 2, 1 пространства предметов и пространства изображений следует соотнести с волновыми числами к, к. Роль фокусных расстояний голографической системы играют величины /, определяемые соотношениями  [c.252]

Главное и дополнительное голографическое изображения преобразуются друг в друга так же, как при отражении в сферическом зеркале. Действительно, из соотношений (61.5) и (61.7), (61.9), (61.11) легко получаем  [c.252]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]


Полезными свойствами обладают голографические системы определенного рода, в которых каждая точка предмета порождает на голограмме элементарную решетку Рэлея. Один из способов осуществления таких голограмм иллюстрируется схемой, изображенной на рис. 11.10. Плоский прозрачный объект, показанный пунктиром, просвечивается параллельным пучком лазерного излучения часть того же пучка фокусируется линзой А на малое отверстие О, которое служит источником опорной сферической волны. Схема обеспечивает, очевидно, когерентность опорной волны и волн, идущих от предмета.  [c.254]

В результате дифракционного расширения изображения точки голографическая система не сможет отличить друг от друга две точки, если расстояние между ними меньше диаметра дифракционного пятна, т. е, они будут восприниматься в изображении как  [c.256]

Качество голографических изображений  [c.259]

В предыдущих разделах основное внимание концентрировалось на физической стороне процесса голографирования, и мы сознательно не обсуждали некоторые детали, не имеющие значения с этой точки зрения, но очень важные для получения высококачественных голографических изображений. Отметим теперь ряд таких деталей.  [c.261]

Обратная картина имеет место при интерференции встречных или почти встречных волн (0 180°), когда >./[2 sin як /4 и условие (65.1) выполняется с большим запасом. В таких расположениях дифрагировавшая волна соответствует брэгговскому отражению и следует ожидать образования только одного голографического изображения.  [c.263]

Одна из трудностей цветной голографии связана с изменением толщины фотоэмульсии, происходящим при ее фотообработке (проявление, фиксирование, промывка и сушка). Практика показывает, что обработка приводит к усадке фотоэмульсии, вследствие чего уменьшается и период трехмерной структуры. В результате условие Вульфа-Брэгга выполняется для более коротковолнового излучения, чем опорное. Этим объясняется некоторое искажение окраски цветных голографических изображений.  [c.266]

Рассмотрим один из методов прикладной голографии, именуемый голографической интерферометрией и нашедший очень широкое распространение. Сущность этого метода в простейшем варианте заключается в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, в процессе деформации. При просвечивании такой двойной голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, как и объект в двух его состояниях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на поверхности изображения наблюдаются полосы, которые и характеризуют изменение состояния объекта.  [c.269]

В другом варианте голограмма изготавливается для какого-то определенного состояния объекта при ее просвечивании объект не удаляется и производится его освещение, как на первом этапе голографирования. Тогда опять получаем две волны, одна формирует голографическое изображение, а другая распространяется от самого объекта. Если теперь происходят какие-либо изменения в состоянии объекта (в сравнении с тем, что было во время экспонирования голограммы), то между указанными волнами возникает разность хода и изображение покрывается интерференционными полосами.  [c.269]

С помощью голографических методов стало возможным получать оптические. элементы, по всем свойствам аналогичные волоконно-оптическим устройствам. Такие. элементы имеют все свойства оптического волокна, но отличаются от него простотой. изготовления. Методы голографии позволяют выполнять оптические элементы и придавать им оптические свойства, которые невозможно получить при обычных методах изготовления. Голографические методы находят широкое применение при аттестации качества оптических. элементов и узлов оптических приборов успешно используются при решении задач выделения сигналов из шумов и распознавания образов. Голография позволяет увеличивать изображения во много раз больше, чем это можно сделать с помощью оптических линз, строить принципиально новые датчики положения и формы объектов и многое другое.  [c.6]


Образование голографического изображения  [c.10]

Голографическое изображение (как мы его будем называть), полученное таким образом, оказывается в точности подобным реальному предмету. Оно объемно, и мы можем заглянуть за предметы , расположенные на переднем пла-  [c.19]

Цели обработки могут быть разными распознавание образов, улучшение качества изображений, извлечение информации,. эффективное кодирование или машинная графика. Попытаемся показать, каким образом голографические пространственные фильтры позволяют достичь различных целей при обработке изображений.  [c.50]

На рис. 91 представлен фотоснимок распределения интенсивности восстановленного поля в задней фокальной плоскости линзы при освещении двухэкспозиционной фурье-голограммы неразведенным лазерным пучком перпендикулярно поверхности голограммы. Между экспозициями объект квадратной формы наклонялся относительно вертикальной оси на угол 15". Поле в центре модулировано спекл-интерферограммой, тогда как боковые сопряженные изображения - голографической интерферограм-мой. Отчетливо видно, что количество интерференционных полос в автокорреляционном гало вдвое больше, чем на голографических изображениях. Следовательно, порог чувствительности к наклону спекл-интерферо-метрии в два раза ниже, чем голографической интерферометрии, а точность измерений - выше, поскольку прямые измерения можно проводить по большему числу полос. Отметим, что сравнение пороговой чувствительности целесообразно проводить при условии, что точность измерения вариаций освещенности на обеих интерферограммах одинакова. Это условие на практике вьшолняется при работе со снимками интерфёрограмм.  [c.170]

Наряду с регистрацией и воспроизведением трехмерных изображений голографические процессы можно применять и для перевода обычных двухмерных киноизображений в голографические с последующим копированием и воспроизведением таких плоских изображений со следующими целями  [c.124]

Проверенные экспериментально в СССР, США, ФРГ такие стереоскопические системы дают высокое качество трехмерного изображения. Стереотелевизионные системы, в которых трехмерное изображение наблюдают с помощью поляризационных очков или растров (без очков), хорошо совмещаются с киноголографическими системами. При этом из трехмерных изображений голографического кинофильма могут быть легко извлечены две составляющие изображений горизонтальных ракурсов для передачи по телевидению.  [c.152]

Для восстановления волнового поля предмета, тем самым для получения его объемного изображения, голограмму помещают в то место, где была расположена фотопластинка при фотографировании, и затем освещают голограмму световым пучком того же лазера под тем же углом, под которым было осуществлено экспонирование. При этом происходит дифракция огюрной волны на голограмме и мы видим объемное со всеми присущими самому объекту свойствами (в нем сохраняется также распределение освещенности, как и в объекте) мнимое изображение. Оно кажется нам настолько реальным что даже игюй раз появляется желание потрогать предмет. Разумеется, это невозможно, так как в данном случае изображение образовано голографической копией волны, рассеянной предметом во время записи голограммы.  [c.206]

Выполнение условия Брэгга—Вульфа для плоскостей Липпмана приводит к избирательности голограммы по отношению к длине волны света, с помощью которого осуществляется восстановление изображения объекта. В действительности при условии постоянства межплоскостного расстояния d, как видно из условия Липпмана— Брэгга—Вульфа, восстановление волнового фронта произойдет только в том случае, если оно осуществляется при той же длине волны, при которой производилась голографическая запись на фотопластинку. Этот факт позволил Ю. Н. Денисюку в качестве источника, восстанавливающего изображение света, пользоваться источником сплошного спектра (светом от солнца и даже от карманного фонарика). В данном случае голограмма из спектра с разными длинами волн выбирает нужную ей одну длину, в которой именно производилась запись, — голограмма действует подобно интерфе-pei/ционному фильтру.  [c.219]

Панорамное голографирование. Одннч нз видов объемной голо-гра( )пи является так называемое круговое (нанорамрюе) голографирование. Если пользоваться цилиндрической пленкой и поместить предмет внутри него и произвести голографическую запись с помощью одного из способов, указанных на рис. 8.14 (а—онорный пучок создается непосредственно лазером, 6—опорный пучок сформирован коническим зеркалом), затем, проявляя пленку, произвести просвечивание голограммы при неизменных положениях пленки и опорной волны, то получится изображение с 360-градусным  [c.220]

Опыт, выполненный по схеме рис. 11.4, в, позволяет сделать два интересных вывода. Во-первых, можно было вообиге не экспонировать участок голограммы, закрытый впоследствии диафрагмой. Но это означает, что голограмму можно изготавливать и при наклонном падении сферической волны на экран Н и фотопластинку, т. е. на первом этапе голографирования работать по схеме, аналогичной рис. 11.4, в. Восстановленная волна порядка т = —1 все равно будет иметь центром схождения точку 5, совпадающую с положением источника 5 во время экспонирования. Во-вторых, в схеме с наклонным падением (в отличие от рис. 11.4, а, б) происходит пространственное разделение пучков, образующих действительное и мнимое изображения источника. Это обстоятельство представляет несомненное практическое преимущество, вследствие чего в большинстве голографических приборов осуществляется наклонное падение опорных световых пучков.  [c.241]

Голографическое изображение характеризуется рядом особенностей, связанных с тем, что для его получения используется высококогерентное излучение лазера.  [c.23]

Равномерное распределение по голограмме света, рассеянного объектом, не вызывает локальных переэкспозиций регистрирующей среды и в то же время, как было показано на примере дифракционной пластинки Френеля, голограмма имеет фокусирующие свойства. Это приводит к тому, что при восстановлении в одни точки изображения может быть сфокусировано много больще света, чем в другие. Следовательно, в изображении объекта можно получить много больший диапазон яркостей, чем. это позволяют свойства самой регистрирующей среды. В результате голографическое изображение может передавать интервалы яркостей в объекте на 2—3 порядка больше, чем, например, фотография.  [c.26]


Второй метод голографической интерферометрии — метод реального времени — соответствует методу двух экспозиций. Разница между ними заключается лишь в том, что при использовании реального времени вместо второй экспозиции голографическое изображение непосредственно интерферирует с предметом, с которого получена голограмма. При восстановлении опорный и объектный пучки освещают голограмму и объект, с которого она получена. Отраженные волны интерферируют между собой. Это позволяет сравнить реальный объект с идеальным , т. е. эталонным объектом. Он может быть представлен, например, 1 олограммой, синтезированной на ЭВМ.  [c.29]

Первые лазерные голограммы были получены Е. Лейтом и Ю. Упатниексом, предложившими другую голографическую схему. Они разделили световые пучки, получив при восстановлении изображение высокого качества со всеми. эффектами объемности, как это предсказывал Д. Г абор. Изображенная на рис. 4 схема Лейта предназначена для регистрации непрозрачных и отражающих объектов. Прозрачные  [c.43]

Когда объект находится достаточно далеко от фотопластинки либо в фокусе линзы (рис. 13, 6), каждая точка объекта посылает на фотопластинку параллельный световой пучок, при этом связь между амплитудно-фазовыми распределениями объектной волны в плоскости голограммы и в плоскости объекта дается преобразованием Фурье или Фурье-образом, осуществляющим разложение оптического изображения объекта в двумерный спектр по пространственным частотам (более подробно о преобразовании Фурье мы поговорим в главе Голографические оптические. элементы ). Голограмма в. этом случае называется голограммой Фраунгофера. Если амплитудно-фазовые распределения объектной и опорной волн являются Фурье-образами и объекта, и опорного источника, то голограмму называют голограммой Фурье. При получении голограммы Фурье объект и опорный источник обычно располагают в фокусе линзы (рис. 13, в). В случае безлинзовой голограммы Фурье опорный источник располагают в плоскости объекта (рис. 13 г). При. этом фронт опорной во7шы и фронты. элементарных волн, рассеянных отдельными точками объекта, имеют одинаковую кривизну. В результате структура и свойства голограммы практически такие же, как у голограммы Фурье. Голограммы Френеля образуются в том случае, когда каждая точка объекта посылает на фотопластинку сферическую волну (рис. 13, <)).  [c.47]

Голограмма Фурье является оптимальным пространственным фильтром. Такой фильтр обладает свойством распознавать тот транспарант, с которого фильтр был изготовлен, создавая в плоскости изображения яркие точки — оптические сигналы опознавания. Для этого транспарант помещают в фокальную плоскость линзы Л слева (плоскость /, см. рис. 16), а по дру1 ую сторону линзы, также в фокальной плоскости (частотная плоскость 2) устанавливают голографический пространственный фильтр какой-либо его части. Если теперь транспарант осветить когерентным светом, то в середине фокальной плоскости. ( линзы Л2 (за счет нулевого порядка) можно по-прежнему. 52  [c.52]


Смотреть страницы где упоминается термин Изображение голографическое : [c.54]    [c.211]    [c.204]    [c.686]    [c.281]    [c.92]    [c.220]    [c.359]    [c.360]    [c.252]    [c.258]    [c.265]    [c.44]    [c.53]   
Оптика (1976) -- [ c.239 , c.241 , c.271 ]

Изобразительная голография и голографический кинематограф (1987) -- [ c.3 , c.18 ]



ПОИСК



Анализ аберраций голографического изображения

Влияние шумов голографической телевизионной системы на восстановленное изображение

Воспроизведение голографического изображения

Голографическая интерферометрия сфокусированных изображений

Голографическая интерферометрия сфокусированных изображений в реальном времени

Голографическая интерферометрия сфокусированных изображений методом двух экспозиций

Голографическая интерферометрия увеличенных сфокусированных изображений в реальном времени

Голографическая регистрация сфокусированных изображений и их восстановление излучением различного спектрального состава

Голографические интерферограммы сфокусированных изображений с локальным опорным пучком

Голографическое вычитание изображений на основе регистрации в фурье-плоскости и пространственной фильтрации узки м пучком

Изображение голографическое монохромное

Изображение голографическое ортоскопическое

Изображение голографическое псевдоскопическое

Изображение голографическое трехмерное

Изображение голографическое цветное

Изображение растрово-голографическое

Интерферометрия и оптический синтез изображения (сложение комплексных амплитуд) методом последовательного наложения голографических картин на одну голограмму

Качество голографических изображений

Контраст голографического изображения

Лампы для воспроизведения голографического изображения

ОСОБЕННОСТИ ГОЛОГРАФИЧЕСКОГО ИЗОБРАЖЕНИЯ И ЕГО СТРУКТУРНЫЕ ХАРАКТЕРИСТИКИ

Образование голографического изображения

Особенности голографического изображения

Особенности растрово-голографического изображения

ПЕРЕДАЧА ИЗОБРАЖЕНИЯ В ГОЛОГРАФИЧЕСКИХ СИСТЕМАХ

Перевод многоракурсиых стереоскопических изображений в голографические

Проекция статических голографических изображений

Свойства радужных голографических изображений

Смещение спекл-структуры в плоскости голографического изображения при вращении объекта

Техника воспроизведения голографических изображений

Устройства воспроизведения изображения (см. Голографические системы телевиденияприемные устройства)



© 2025 Mash-xxl.info Реклама на сайте