Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологические особенности конструкционных сталей

ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ КОНСТРУКЦИОННЫХ СТАЛЕЙ  [c.109]

Исследования прочности и надежности сварных конструкций в условиях низких температур проводятся в Институте физико-технических проблем Севера ЯФ СО АН СССР. Новые методические подходы к выявлению вклада различных факторов, определяющих наступление хладноломкости конструкций, позволяют разрабатывать конструктивные и технологические меры повышения хладостойкости сварных конструкций. Для практики важное значение имеют технологические особенности сварки распространенных конструкционных сталей в условиях низких температур до —50°С, установленные В П. Ларионовым с сотрудниками.  [c.3]


Рациональный выбор конструкционных сталей подразумевает обязательный учет всего комплекса технологических свойств сталей и особенно их прокаливаемости. Однако практика показывает, что прокаливаемость, являющуюся одним из важнейших технологических свойств стали, учитывают лишь в редких случаях. Между тем опыт отдельных заводов отечественного машиностроения (автомобильных, подшипниковых), а также зарубежный опыт свидетельствуют о том, что назначение стали в связи с ее прокаливаемостью позволяет получить значительный техникоэкономический эффект. При этом не только снижается брак из-за термической обработки деталей и улучшаются показатели работы термического оборудования, но и существенно повышается качество и особенно надежность и долговечность машин, агрегатов и т. п. Увеличение долговечности приводит в свою очередь к снижению расходов на ремонт машин и агрегатов и, как следствие этого, к снижению эксплуатационных расходов.  [c.3]

Естественно, технологические процессы на металлургических заводах и отношение к контролю вязкости стали с дефектами широко изменялись в различных странах. В США производительность и технологические процессы изготовления стали стремились сохранить стабильными, поэтому было, естественно, сопротивление к разного рода изменениям. В технологических процессах производства конструкционной стали стремились к полному раскислению, повышению содержания углерода, уменьшению процента марганца. В большинстве конструктивных спецификаций подчеркивалась важность прочностных характеристик стали, и некоторое беспокойство вызывала вязкость ее при наличии дефектов. Металлурги были не расположены к каким-либо дополнительным испытаниям, и в особенности к ударным испытаниям образцов с надрезом из конструкционных сталей. Они объясняли это тем, что по принятой технологии изготовляли дешевые стали, вполне  [c.390]

Токарная обработка осуществляется как на универсальном оборудовании, так и на специальных станках. Используются автоматы продольного точения, прутковые токарно-револьверные автоматы и многошпиндельные прутковые автоматы, токарно-копировальные станки и токарные станках с ЧПУ. При обработке цилиндрических заготовок учитывают технологические особенности заготовок а) отношение длины к диаметру (особенно на мелкоразмерном инструменте) б) наличие сварного шва в) наличие участков с различной обрабатываемостью (быстрорежущая рабочая часть и хвостовик из конструкционной стали) г) глубину съема материала, особенно при обработке некоторых размеров конусов Морзе).  [c.407]


Рассмотрена деградация механических свойств конструкционных сталей в условиях действия технологических и эксплуатационных (температура, давление, среда и т.п.) факторов охрупчивания. Приведены механические, структурные и фрактографические особенности развития и обнаружения таких эксплуатационных видов охрупчивания, как наклеп, деформационное, тепловое водородное и радиационное охрупчивание, водородная коррозия, графитизация, науглероживание, азотирование и другие. Впервые приведены диагностические карты опознания видов хрупкости, выявляемых разрушающими и неразрушающими методами диагностирования.  [c.2]

Опознание вида хрупкости в конструкционных сталях предполагает комплекс исследований, В зависимости от конструктивного исполнения, особенностей технологического процесса и других факторов могут использоваться разрушаюш,ие и неразрушающие способы.  [c.204]

Основная область применения молибдена — металлургия. Молибденовые стали характеризуются повышенной прочностью, сопротивляемостью износу и ударным нагрузкам. Особенно высока жаропрочность молибденовых сталей, причем при равных присадках она значительно больше, чем у вольфрамовых. В быстрорежущих сталях молибден может заменять вольфрам. Стали, легированные молибденом, применяются для изготовления брони и оружия — это броневые, орудийные и ружейные стали. Молибден широко также используется в конструкционных сталях, которым он сообщает высокие прочностные и технологические свойства. В сочетании с никелем, кобальтом и хромом молибден входит в состав кислотоупорных и жаростойких сталей.  [c.109]

Технологические особенности сварки высоколегированных сталей и сплавов. Технология сварки высоколегированных сталей такая же, как и углеродистых конструкционных сталей. Вместе с тем имеется ряд специфических особенностей, присущих только этой группе материалов. Пониженная теплопроводность и высокий коэффициент линейного расширения обусловливают усиленное коробление конструкций и узлов из высоколегированных сталей и сплавов. Поэтому для их сварки применяют режимы, которые характеризуются минимальной концентрацией нагрева. В этом смысле лучшие результаты дает механизированная сварка под флюсом и в среде защитных газов.  [c.603]

ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ СВАРКИ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ЗАВИСИМОСТИ ОТ ГРУППЫ СВАРИВАЕМОСТИ  [c.14]

В химическом машиностроении наряду с легированными сталями находят широкое применение в качестве конструкционных материалов различные цветные металлы и сплавы, использование которых определяется как особенностями технологических процессов, так и благоприятными физико-механическими и антикоррозионными свойствами этих материалов.  [c.245]

В силу особенностей влияния на свойства стали, а также по технологическим соображениям наиболее перспективным промышленным способом использования ТМО для улучшения качества массовых конструкционных и строительных сталей, а также сталей и сплавов, работающих в условиях больших и сложных по схеме нагрузок, является ВТМО.  [c.536]

Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки.  [c.413]


Развитие сварки плавлением двухслойных сталей привело к разработке общих принципиальных положений, касающихся особенностей подготовки кромок, выбора присадочных материалов, методов контроля качества сварки. Наиболее разработаны способы сварки сталей, плакированных нержавеющими хромистыми и хромоникелевыми сталями [И, 12]. Технологические процессы сварки двухслойных сталей ориентированы на обеспечение сплошности поверхности плакирующего слоя и достаточной прочности основного несущего слоя. Сплошность плакировки должна гарантировать необходимую коррозионную стойкость сварного соединения. Конструкционная прочность сварного соединения, оцениваемая, как правило, по основному слою, должна быть не ниже прочности основного металла. Главным требованием к сварке двухслойных сталей является недопустимость разбавления металла шва высоколегированным металлом плакирующего слоя или наплавки, которое может приводить к образованию хрупких участков и появлению зародышевых трещин.  [c.109]

Рассмотрены особенности структурного состояния и свойств сталей и сварных соединений в исходном состоянии и в процессе длительной эксплуатации при ползучести, изложены виды и механизмы повреждений сварных соединений, обусловленные технологическими, конструкционными и эксплуатационными причинами. Приведены современные методы диагностирования, особенности методов оценки ресурса сварных соединений и меры по его увеличению.  [c.2]

Марганец является дешевой и недефицитной легирующей примесью. Присадка марганца к стали (обычно от 0,8 до 1,8%) повышает прочность, твердость и упругость стали. Марганцовистые стали имеют хорошие технологические свойства — высокую прокаливаемость, штампуемость в холодном состоянии, хорошую обрабатываемость резанием и свариваемость. Одновременно с этим марганцовистые стали обладают недостатками — большой склонностью к росту зерна аустенита при перегреве, к развитию трещин при закалке и отпускной хрупкости второго рода. Марганцовистые стали с низким содержанием углерода используют как строительные высокопрочные стали или как конструкционные цементуемые. Марганцовистые стали со средним и высоким содержанием углерода нашли широкое применение, особенно в сочетании с кремнием, для производства рессор и пружин.  [c.218]

Двухслойные стали в большинстве случаев используются в качестве конструкционного материала в машино-и аппаратостроении, т. е. они подвергаются различным видам обработки. При этом необходимо учитывать специфические особенности биметалла, и в первую очередь различие физических и технологических свойств основного и плакирующего слоев.  [c.181]

Совместное присутствие хрома и иикеля придает конструкционным легированным сталям особо высокие технологические свойства, высокую механическую прочность и износоустойчивость. В этих сталях наряду с наличием твердых карбидов хрома присутствуют прочные и вязкие структурные составляющие, образующиеся благодаря наличию в стали никеля. Никель, повышая прочность твердого раствора (феррита), увеличивает благотворное влияние карбидов хрома, присутствующих в стали. Эти стали обладают высокой прокаливаемостью, что особенно важно для улучшаемых марок сталей этой группы.  [c.187]

Как известно, обрабатываемость резанием заготовок из коррозионно-стойких и жаропрочных сталей и титановых сплавов хуже, чем углеродистых и низколегированных. Процесс резания труднообрабатываемых материалов лезвийными инструментами сопровождается повышенным изнашиванием инструмента, большими энергозатратами и характеризуется низкой производительностью. При этом, ввиду специфических особенностей процесса резания заготовок из таких материалов, ряды ранжирования СОЖ по технологической эффективности могут значительно отличаться от рядов ранжирования этих же жидкостей при обработке резанием заготовок из конструкционных углеродистых и низколегированных сталей. Об этом свидетельствуют и результаты выполненных испытаний.  [c.253]

Углеродистая сталь, в зависимости от ее назначения, подразделяется на конструкционную, инструментальную и специальную с особыми свойствами. В свою очередь эти стали в зависимости от технологических и конструктивных особенностей подразделяются на виды и группы.  [c.115]

В практике промышленного производства бывает, что, казалось бы, правильно выбранное покрытие в серийном изделии воспринимается совсем не так, как видел его художник или конструктор на абстрактном образце или даже в опытном макете. В большинстве случаев такой результат является следствием недостаточного учета технологических факторов и специфики производства. Чтобы покрытие стало органической частью конструкционного материала и формы, необходимо в процессе конструирования учитывать особенности технологии формообразования детали и нанесения покровных пленок [119, 139].  [c.13]

Однако, наряду с перечисленными хорошими технологическими и конструкционными качествами, винипласт имеет недостатки, ограничивающие области его применения низкий температурный предел применения винипласта как самостоятельного конструктивного материа.ла (40—50° С) низкая удельная ударная вязкость (особенно при пониженной температуре) большой коэффициент линейного TepjMHne Koro расширения (почти в б раз больше, чем у стали) постепенная деформация под нагрузкой. Явление хладотекучести проявляется и при нормальной температуре, что следует учитывать при расчетах па прочность.  [c.413]

Описана теория легирования стали. Показано влияние легирующих элементов на структуру и свойства стали. Приведены технологические особенности обработки легированных сталей. Рассмотрены принципы легирования и термической обработки легированных сталей различного назначения конструкционных, коррозионностойких, теплостойких, жаропрочных, окалиностонких и инструментальных.  [c.26]


В зависимости от рода получаемого шлака электродные покрытия могут быть разбиты на кислые и основные. Важнейшим моментом, определяющим качество покрытия, является степень его раскислённости или окислительная способность образуемых им шлаков. Даже в условиях весьма эффективной защиты расплавленного металла от вредного внешнего воздействия атмосферного кислорода нераскис-лённые или слабо раскисленные шлаки могут насытить металл шва значительным количеством кислорода за счёт перехода свободных окислов из шлака в металл. Аналогичное явление может иметь место при использовании в покрытии рудных компонентов, которые при нагреве выделяют свободный кислород, например, марганцевая руда. В советской практике для многих марок толстопокрытых электродов применяются главным образом основные рас-кислённые покрытия, особенно при сварке легированных сталей. Для регулирования химического состава металла шва и его механических свойств в советской практике в подавляющем большинстве марок покрытых электродов, применяемых для сварки углеродистых и низколегированных конструкционных сталей, практикуется легирование через покрытие. Для этой цели используются в основном различные ферросплавы, которые одновременно осуществляют и другие функции в электродном покрытии (раскисление, создание мелкозернистости металла шва, повышение устойчивости дуги, улучшение технологических свойств шлака).  [c.297]

Выбор марки стали первых двух групп является относительно легкой задачей, так как критериями в данно.м случае служат их механические свойства и технологические особенности (свариваемость), а также техпико-экономические показатели их применения. Стали 3, 4 и 5-й групп, применяемые для изготовления деталей машин, работающих при обычных температурах, представляют подавляющую массу легированных марок конструкционной стали, подвергаемых термической обработке. Свойства этих марок стали могут изменяться в значительных пределах в зависимости от условий термической обработки, в частности температуры отпуска и массы (сечения), обрабатываемой заготовки. Поэтому характеристики свойств марок стали, приводимые в справочниках и стандартах, не могут служитьдостаточным критерием при их выборе.  [c.213]

В отличие от НТМО, ВТМО не требует прессового оборудования большой мощности. Однако существенным недостатком ВТМО являются определенные технологические трудности, связанные с необходимостью во многих случаях подавлять процесс рекристаллизации [161]. Так, проведение ВТМО конструкционных легированных сталей в условиях прокатки при температуре 800—1100° возможно только на сечениях толщиной около 10 ММ] дальнейшее увеличение толшины заготовок приводит к развитию процесса рекристаллизации и к снятию эффекта упрочнения. В то же время одним из перспективных направлений в использовании ВТМО является аналогичная по технологии обработка поверхностных слоев изделий [131, 132] поверхность детали или отдельные ее участки (в особенности в местах концентрации напряжений) могут быть упрочнены в результате локального екоростного индукционного нагрева токами высокой частоты, совмещаемого с последующей местной пластической деформацией и закалкой [161].  [c.79]

Современное машиностроение — обшьрная и многоплановая отрасль промышленности, характерной особенностью которой является огромное разнообразие машин и механизмов, различных по конструкции, видам эксплуатационных нагрузок, рабочим средам, температурным условиям работы и т. д. В соответствии с этим круг металлических материалов, применяемых в машиностроении, весьма широк конструкционные нержавеюш,ие, кислотостойкие, жаропрочные стали, стали для криогенных температур и с особыми физическими свойствами, сплавы на медной, алюминиевой, никелевой и других основах. Однако расширение номенклатуры металлических материалов, узко специализированных применительно к конкретным эксплуатационным условиям, имеет и неблагоприятные последствия снижение степени унификации механизмов по материалам, необходимость разработки различных технологических процессов их производства и соответствующих видов промышленного оборудования, усложнение использования отходов и т. п. В связи с этим, освоение промышленностью новых металлов, сочетающих свойства разных металлических материалов, представляет собой важную народнохозяйственную проблему.  [c.3]

Анализ причин размерной нестабильности деталей приборов показал [14], что изменение размеров деталей в процессе эксплуатации приборов или длительного их хранения в принципе вызвано нестабильностью фазового состава и структурного состояния сталей и сплавов после окончательной термической и механической обработки деталей, причем самопроизвольный переход к более стабильному фазовому составу или структурному и напряженному состоянию дополнительно стимулируется эксплуатационными и остаточными напряжениями, возникшими в деталях в процессе различных технологических операций. На практике размерная нестабильность изделий является результатом протекания релаксации конструкционных (эксплуатационных) и остаточных напряжений, причем этн процессы особенно интенсивно развиваются в сплавах с метастабильным фазовым н структурным состоянием, а наименее интенсивно — в сплавах со стабильной структурой, в том числе и дислокационной, для которых характерно высокое сопротиаление малым пластическим деформациям (последнее обстоятельство позволяет оценивать степень размерной стабильности металлов и сплавов показателями сопротивления микропластическим деформациям).  [c.686]

Перечисленные группы деталей отличаются между собой по толщине стенок (толстостенные и тонкостенные, осесимметричные и с переменной толщиной стенки), по физико-механическим характеристикам материала (конструкционные, углеродистые, средне- и высоколегированные стали, цветные сплавы), по диаметрам и длине отверстий (диаметры 10—150 мм, длины до 1500 мм), по требованиям, предъявляемым к обработанной поверхности (шероховатость = 0,4 80, точность от 5-го до 1-го класса), по особенностям сложившихся технологических процессов изготовления деталей (обработка на станках-автоматах, автоматических и поточных линиях, наличие термообработки) и т. д. Поэтому для успешного решения вопроса о введении деформирующего протягивания в технологические процессы изготовления столь разнородных деталей потребовалось глубокое исследование этого метода обработки. Такое исследование было выполнено в ИСМ АН УССР в 1964—1974 гг. В процессе его проведения наряду с представленными выше исследованиями качества обработанной поверхности и обрабатываемости металла, упрочненного деформирующим протягиванием, решались также следующие вопросы  [c.162]

Особенности химического состава перерабатываемых нефтей и технологии переработки вызывают электрохимическую хлористоводородно-сероводородную коррозию низкотемпературной части оборудования. Для защиты от нее наряду с рациональным подбором конструкционных материалов применяют технологические методы ингибирования, нейтрализации введением аммиака, защелачивания нефтяного сырья. Последнее может осложняться возникновением щелочной хрупкости стального оборудования. Сульфиды и хлориды могут вызывать коррозионное растрескивание элементов оборудования из нержавеющих сталей аустенитного класса. При переработке нефтей ряда месторождений оборудование разрушается коррозией под действием нефтяных кислот. Высокотемпературное оборудование установок первичной переработки нефти (в котором не содержится капельно-жидкая вода) разрушается в результате высокотемпературной (газовой) сероводородной коррозии. Все эти формы коррозии и пути защиты от них освещены в данной главе.  [c.65]


Выбор вида металлического покрытия для изделия зависит от условий эксплуатации изделия, конструкционных особенностей, экономических соображений и других факторов. В чертеже на изделия должны указываться вид покрытия, который назначается в соответствии с ГОСТ 9.303—84, толщина покрытия по ГОСТ 9.303—84 и обозначение вида покрытия, принятого по ГОСТ 9.306—85. Технологическая схема нанесения покрытия выбирается в зависимости от назначения данного покрытия (защитное, защитнодекоративное, специальное), формы и габаритов деталей, природы покрываемого металла (сталь, латунь, медь, алюминий, цинковый сплав и др.), а также от способа изготовления (штамповка, литье, резание и др.). Помимо данных о покрытии, технологические схемы содержат описание подготовительных, заключительных и промежуточных операций, а также данные о технологическом оборудовании (стационарные ванны, автоматы, барабаны, колокола и др.).  [c.143]

В ряде случаев, особенно при разработке реакционного оборудования, часто используются оба вида защиты. Например, корпус аппарата выполняется из углеродистой стали с антикоррозионным покрытием, а внутренние технологические устройства (опоры под насадку, брызгоуловители, оросительные устройства) из конструкционных химически стойких материалов.  [c.14]


Смотреть страницы где упоминается термин Технологические особенности конструкционных сталей : [c.322]    [c.344]    [c.145]    [c.25]    [c.342]   
Смотреть главы в:

Машиностроительные материалы Основы металловедения и термической обработки  -> Технологические особенности конструкционных сталей

Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении  -> Технологические особенности конструкционных сталей



ПОИСК



220 — Технологические особенности

СТАЛЬ 280 СТАЛЬ КОНСТРУКЦИОННАЯ

Сталь конструкционная

Технологические особенности сварки конструкционных сталей в зависимости от группы свариваемости



© 2025 Mash-xxl.info Реклама на сайте