Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хрома молибденом

Легирующие элементы замедляют процесс распада мартенсита. Некоторые элементы, такие как никель или марганец, влияют незначительно, тогда как большинство (хром, молибден, кремний и др.) — весьма заметно.  [c.358]

Для получения одинаковых результатов сталь, легированную такими элементами, как хромом, молибденом, кремнием и др., нужно нагревать при отпуске до более высокой температуры или увеличивать продолжительность отпуска по сравнению г углеродистой сталью.  [c.359]


Стойкость различных металлов против коррозионно-эрозионного воздействия жидкого натрия различна. Высокой стойкостью в натрии обладают никель, хром, молибден, железо, цирконий ограниченно устойчивы титан и нержавеющая сталь, а углеродистая сталь, алюминий, платина неустойчивы. В наибольшей степени требованиям современной техники удовлетворяют аустенитная нержавеющая сталь и цирконий, обладающие оптимальным сочетанием требуемых свойств.  [c.560]

Хрупкие металлы и соединения независимо от причин, вызвавших эту хрупкость (пограничные выделения избыточных фаз в ряде таких металлов, как хром, молибден, вольфрам, тантал и др. или наличие значительной составляющей ковалентной связи — фазы внедрения— полупроводниковые вещества), характеризуются значительно более высоким уровнем 7 , даже если они обладают относительно высокой чистотой Т составляет в этом случае 0,5—0,6 T и выше.  [c.344]

С целью улучшения механических свойств сталей применяют легирующие присадки — никель, хром, молибден, вольфрам, титан и пр. Введение легирующих примесей увеличивает стоимость и дефицитность стали.  [c.211]

Полагают, что хладноломкость является природным свойством металлов, особенно с о. ц. к. решеткой [1], вследствие резкого повышения предела текучести при низких температурах. Причиной хладноломкости считают возникновение или усиление ковалентных связей при понижении температуры. О. ц. к. металлы железо, хром, молибден и вольфрам считают хладноломкими.  [c.20]

Хром, молибден и вольфрам при 20 °С устойчивы при повышенных температурах они окисляются, особенно молибден и вольфрам, оксиды которых летучи. При высокой температуре эти металлы реагируют с азотом и углеродом их карбиды имеют высокие твердость и температуру плавления.  [c.111]

Отличительная особенность этих металлов — чувствительность к незначительной концентрации примесей внедрения вследствие чрезвычайно малой растворимости последних (до 0,0001 %). Поэтому промышленные хром, молибден и вольфрам даже после высокой очистки являются пересыщенными твердыми растворами, особенно при понижении температуры это приводит к хладноломкости. Даже незначительные количества кислорода, азота, углерода, серы н фосфора сообщают хладноломкость хрому, молибдену и вольфраму. Локальная концентрация примесей повышается с увеличением размеров зерна, приводя к появлению хрупкости.  [c.111]

Среди металлов с о. ц. к. кристаллической структурой хром, молибден и вольфрам считаются хладноломкими, а ванадий, ниобий и тантал— пластичными. Теплопроводность первых в два раза выше.  [c.196]


Деформируемый титановый сплав марки ВТЗ-1 относится к сплавам системы титан — алюминий — хром — молибден.  [c.374]

В исходном состоянии алитированный слой состоит из явно обозначенных двух зон (рис. 1). Первая зона, примыкающая к поверхности (на 1-м и последующих рисунках показана только часть этой зоны), состоит из крупных кристаллов. Во второй зоне, примыкающей к основному металлу, видны мелкодисперсные включения. Из химической топографии этого слоя видно, что зоны алитированного слоя сильно различаются между собой по химическому составу. Содержание алюминия в первой зоне слоя составляет 30%, что отвечает интерметаллидному соединению (N1, СО) А1, в котором в небольшом количестве растворены другие легирующие элементы. Вторая зона алитированного слоя сильно пересыщена тугоплавкими элементами хромом, молибденом, вольфрамом и титаном (последние три элемента на рисунке не показаны). Общая толщина алитированного слоя в исходном состоянии 30 мк.  [c.166]

Обычно борированный слой на углеродистых и низколегированных сталях имеет характерную зубчатую конфигурацию нижней границы. С увеличением степени легирования стали хромом, молибденом или вольфрамом тенденция к образованию зубьев уменьшается. Экспериментально установлено, что при содержании хрома более 6% зубчатый контур полностью нивелируется.  [c.42]

Для повышения сопротивления КР малоуглеродистые стали легируют элементами, связывающими углерод и азот в соединения, нерастворимые в феррите и аустените. К таким элементам относится титан, введение которого весьма заметно увеличивает стойкость к КР. Легирование сталей хромом, молибденом, алюминием, марганцем и ванадием тоже повышает сопротивление КР. Увеличение содержания фосфора снижает стойкость мягких сталей к КР.  [c.69]

На рис. 2 представлена схема кривых усталости в зависимости от длительностей выдержек в широком диапазоне общих длительностей нагружения для хромо-молибден-ванадиевой стали при температуре 565° С [6, 71. Кривые нанесены в зависимости от разрушающего числа циклов и в зависимости от выдержек Ат соответствуют различным суммарным временам, необходимым для разрушения SAt. Последние определяются в основном длительным статическим повреждением. Согласно изложенной выше интер-  [c.6]

В первом случае в качестве наполнителя могут быть использованы, например, вольфрам, хром, молибден. Эти материалы являются хрупкими, но обладают хорошей теплостойкостью. Если в качестве матричной фазы воспользоваться материалами, которые обладают высокой вязкостью, можно получить жаростойкие композиты с хорошей вязкостью.  [c.21]

На рис. 269 представлена зависимость глубины слоя от температуры и продолжительности азотирования стали 38ХМЮА (сталь содержит хром, молибден и алюминий). Менее легированные стали азотируются легче, т. е. заданная глубина достигается при данной температуре за меньший отрезок времени. Наоборот, более легированные азотируются хуже, а в таких высоколегированных сталях, как нержавеющие, не удается получить глубину слоя более чем 0,20—0,25 мм.  [c.334]

На рис. 280 показаны изменения свойств феррита (твердость, ударная вязкость) при растворении в нем различных элементов. Как видно из диаграмм, хром, молибден, вольфрам упрочняют феррит меньше, чем никель, кремний и марганец. Молибден, вольфрам, а также марганец и кремний (при иали-  [c.349]

Таким образом, в сталях, легированных карбидообразующими элементами (хром, молибден, вольфрам), наблюдаются два максимума скорости изотермического распада аустенита, разделенных областью относительной устойчивости переохлажден-iHoro аустенита. Изотермический распад аустенита имеет два явно выраженных интервала превращений — превращение в пластинчатые (перлитное превращение) и превращение в игольчатые (бейнитные превращения) структуры.  [c.355]

Все легирующие элементы уменьшают склонность аустенит-ного зерна к росту. Исключение составляют марганец и бор, которые способствуют росту зерна. Остальные элементы, измельчающие зерно, оказывают различное влияние никель, кобальт, кремний, медь (элементы, не образующие карбидов) относительно слабо влияют на рост зерна хром, молибден, вольфрам, ванадир , титан сильно измельчают зерно (элементы перечислены в порядке роста силы их действия). Это различие является прямым следствием различной устойчивости карбидов (и нитридов) этих элементов. Избыточные карбиды, не растворенные в аустените, препятствуют росту аустенитного зерна (см. теорию барьеров, гл. X, п. 2). Поэтому сталь при наличии хотя бы небольшого количества нерастворимых карбидов сохраняет мелкозернистое строение до весьма высоких температур нагрева.  [c.358]


Поскольку действие этих элементов на свойства сплава одинаково (ухудшается пластичность за счет подъема порога хладноломкости), то для получения пластичного металла необходимо, чтобы в хроме, моли бдене, вольфраме сумма -j-N + O составляла не более 10- % или не более 0,001%, что представляет собой труднейшую, практически не решенную еще задачу. В ванадии, ниобии и тантале сумма -bN-1-О может быть порядка 0,1 7о (вероятно, 0,05% ), что практически достижимо. Поэтому промышленные хром, молибден, вольфрам (и их сплавы) хрупки, порог хладноломкости лежит выше комнатной тем-пе]затуры, а ванадий, ниобий, тантал пластичны, порог хладноломкости этих металлов лежит ниже комнатной температуры (см. рис. 383).  [c.524]

Борьбу с этим очень опасным видом коррозии ведут а) применяя металлы, менее склонные к коррозионному растрескиванию (например, малоуглеродистую сталь, содержащую 0,2% С, с фер-рито-перлитной структурой) б) используя коррозионностойкое легирование (например, сталей хромом, молибденом) в) проводя отжиг деформированных металлов для снятия внутренних напряжений (например, отжиг деформированных латуней) г) создавая в поверхностном слое металла сжимающие напряжения (например, путем обдувки металла дробью или обкаткой роликом) д) тщательной (тонкой) обработкой поверхности для уменьшения на ней механических дефектов е) проводя обработку коррозионной среды (например, питательной воды котлов высокого давления) ж) вводя в электролит замедлители коррозии з) нанося защитные покрытия  [c.335]

Ле[ироваииые стали вследствие более высокой устойчивости переохлажденного аусте-иита и соответственно меньшей критической скорости охлаждения (рис. 129, Vk и Ик) прокаливаются на значи-те П)По ббльи1ую глубину, чем углеродистые. Сильно повышают ирокаливаемость марганец, хром, молибден и малые ирисадки бора  [c.208]

Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

Как уже отмечалось, износостойкость валков определяется твердостью от(эслснно-го слоя, максимальное значение которой при использовании келегированных чугу-нов достигает 70 HR . Такую твердость можно получить у валков, диаметр бочки которых не превышает 500 мм. В связи с совершенствованием станов непрерывной и полунепрерывной прокатки потребовались более долговечные валки высокой твердости (90 - 95 HSD). Двухслойные валки для этих станов получают литьем. Наружный слой формируется из чугуна, легированного хромом, молибденом, а центральная зона -из серого чугуна. Получение двухслойных валков потребовало разработки специальной технологии (рис. 157).  [c.332]

Поэтому в сталях, деформируемых при высоких температурах, замедлению рекристаллизации выделениями карбидов способствует введение карбидообразующих элементов, таких как титан, хром, молибден и т.п. Так, при сравнении сталей 06Х18Н11 и 06Х18Н11Т было непосредственно установлено влияние титана. Оказалось, что при 900°С рекристаллизация в стали, легированной титаном, замедляется в несколько раз, при 1000° С замедление оказывается слабее, а при 1100° С практически отсутствует.  [c.371]

Азотируют детали из стали со средним содержанием углерода, легированной алюминием, хромом,, молибденом, ванадием и др. Эти элементы образуют с азотом дисперсные нитриды (A1N, Mo. N, VN и т. д.) или карбо-ннтриды, повышающие твердость слоя (до HV 1200). Легированные азотируемые стали называются нитрал-лоями, например сталь 38ХМЮА (0,3—0,38% С, 1,35— 1,65% Сг, 0,4—0,6% Мо, 0,75—1,1% А1). Детали азотируют после их окончательной обработки, т. е. после термической обработки и шлифования. Термическая обработка до азотирования состоит в улучшении, т. е. в закалке с высоким отпуском. Таким образом структура сердцевинных зон азотированных деталей состоит из сорбита.  [c.128]

Для изготовления мощных контактов применяют следующие системы из тугоплавких и электропроводных металлов, не сплавляющихся между собой 1) серебро с кобальтом, никелем, хромом, молибденом, вольфрамом, танталом, 2) медь с фольфрамом и молибденом, 3) золото с вольфрамом и молибденом. Бинарные и более сложные композиции содержат в основном указанные композиции металлов. В некоторых случаях состав сплавов усложняется специальными примесями, но принцип выбора основных компонентов для композиций соблюдается всегда. Вследствие несплавляемости компонентов композиции готовят спеканием смеси металлических порошков и пропиткой компонента В расплавленным компонентом Л. В результате получается смесь компонентов А и В, причем стремятся, чтобы оба компонента представляли собой непрерывно взаимно- переплетающиеся скелетные структуры. При такой микроструктуре и при правильно подобранных гранулометрических составах порошков достигается наиболее выгодное сочетание электропроводности и термической устойчивости композиций.  [c.253]

Металлы имеют кристаллическое строение, представляющее регулярную структуру (рис. 1.3), в которой в определенном порядке размещены атомы вещества. Многие металлы имеют кубичоскую объемноцентрированную структуру (железо, хром, молибден), кубическую гранецентрированную структуру (алюминий, медь)  [c.11]

Ко второй группе относятся сложные сплавы никеля с ме.яью, хромом, молибденом, вольфрамом и другими элементами типа монель, гастелой, ииконель. Сплавы этой группы отличаются исключительно высокой кор . зиоаиой стойкостью в широком интервале температур.  [c.270]

В США применяют жаропрочные кобальтовые сплавы типа стеллита и виталлиума, представляющие собой сложные сплавы кобальта с хромом, молибденом, вольфрамом и другими элементами. Эти сплавы используются в лигом состоянии. Они обладают хорошими литейными свойствами. Детали из кобальтовых сплавов любой сложной формы получают прецизионным литьем. Из кобальтовых сплавов готовят жаропрочные детали газовых турбин и реактивных двигателей.  [c.297]


Твердость и износостойкость слсев, образуюпщхся в результате наплавки электродами, обусловливается легированием наплавляемого слоя содержащимися в электроде компонентами, которыми служат такие элементы, как хром, молибден, вольфрам, титан, бор и др.  [c.567]

Если легирование алюминия в алюминидных покрытиях магнием, кремнием, оловом, лантаном, цирконием, хромом, молибденом повышает адгезионную прочность до 400—550 кгс/мм , то легирование алюминия в алюминийоксидных порошках оптимального состава, технологии приготовления и режимов напыления  [c.99]

Таким образом, результаты проведенных исследований позволяют сделать вывод о том, что легирование термореагирующего никель-алюминиевого порошка кобальтом, хромом, молибденом, вольфрамом оказывает положительное влияние на кинетику взаимодействия никеля и алюминия в его частицах, состав и свойства напыленного покрытия.  [c.113]

В качестве иллюстрации целесообразности применения этого метода представлены итоги математической обработки трех плавок никелевого сплава и трех низколегированых перлитных сталей, содержащих хром, молибден и ванадий, используемых в стационарном энергомащиностроении.  [c.71]

Цирконий вводят в белый чугун при получении ковкого чугуна (ЛЯ того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым 10Дификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий.  [c.63]

Стали и чугуны — наиболее широко используемые сплавы на железной основе. Содержание углерода в сталях не превышает 1,7 % в чугунах оно может доходить до 4 %. Таким образом, эти материалы в наибольшей степени подвержены коррозии под напряжением. Нелегированные железоуглеродистые сплавы используются в основном для изготовления строительных конструкций, а также различных аппаратов и емкостей. Для большей коррозионной стойкости эти сплавы легируют хромом, молибденом, кремнием, никелем, алюминием и другиАш элементами.  [c.38]

Экранные трубы и пароперегреватели изготовляют преимущественно из стали перлитного класса марки 12Х1МФ, легированной хромом, молибденом и ванадием. При изготовлении элементов котла, работающих при повышенных температурах (примерно 500 °С), применяют аустенитную сталь 08Х18Н12Т.  [c.178]


Смотреть страницы где упоминается термин Хрома молибденом : [c.254]    [c.255]    [c.392]    [c.486]    [c.144]    [c.53]    [c.132]    [c.276]    [c.25]    [c.368]    [c.291]    [c.4]    [c.145]   
Гальванотехника справочник (1987) -- [ c.239 ]



ПОИСК



Молибден

Молибденит

Хрома

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте