Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы никель-хром и никель-железо-хром, легированные алюминием

СПЛАВЫ НИКЕЛЬ-ХРОМ И НИКЕЛЬ-ЖЕЛЕЗО-ХРОМ, ЛЕГИРОВАННЫЕ АЛЮМИНИЕМ  [c.62]

Наличие около 0,1% примеси железа в чистом алюминии повышает его скорость растворения в 2 н. соляной кислоте в 160 раз, а содержание 0,1% меди — в 1600 раз. Кремний и магний практически не оказывают вредного влияния на коррозионную устойчивость алюминия. Цинк в небольших количествах также безвреден, но алюминиевые сплавы, содержащие магний и цинк, неустойчивы. Коррозионную устойчивость этих сплавов повышают путем дополнительного легирования медью, хромом или ванадием. Свинец не оказывает никакого влияния при содержании до 0,5—1,4%. Кобальт и никель чаще всего более вредны, чем медь.  [c.133]


Ионное легирование железа алюминием более эффективно чем хромом и никелем при равных концентрациях легирующих компонентов. При ионной имплантации алюминием образуется поверхностный сплав Fe, 6,6% А1, склонный к самопассивации и более стойкий к локальным формам коррозии, чем сплавы Fe, 6,6% Сг и Fe, 6,6% Ni, полученные также методом ионной имплантации.  [c.132]

Легированная сталь представляет собой сплав железа с углеродом и другими элементами, обозначаемыми в марках следующими буквами X — хром, Г — марганец, -И — никель. С —кремний, Ю — алюминий, Т — титан, Ф — ванадий, В — вольфрам.  [c.116]

Железо в сплавах присутствует обычно в виде примесей, хотя имеется ряд марок, содержащих до 30 % и более железа. Легирование 15-20 % хрома обеспечивает стойкость к высокотемпературной коррозии. Молибден и вольфрам, находящиеся либо в твердом растворе, либо в карбидах, повышают жаропрочность сплава. Алюминий и титан с никелем образуют у -фазу №з(А1, Ti), являющуюся основным упрочнителем. Кобальт вводится в никелевые сплавы для понижения энергии дефектов упаковки и интенсифицирует дисперсионное твердение, обусловленное выделением у -фазы.  [c.582]

Быстрое развитие ракетной техники, реактивной и турбореактивной авиации привело в последние годы к увеличению потребности в материалах, характеризующихся хорошими прочностными характеристиками при высоких температурах. Такие материалы в отличие от жаростойких называются ж а р о -п р о ч н ы м и. В принципе, жаростойкость не всегда сопутствует жаропрочности. Например, сплавы на основе железа или никеля, легированных хромом или алюминием, весьма стойки в окислительных средах пр высокой температуре, но характеризуются значительным ухудшением механических свойств с ростом последней. С другой стороны, тугоплавкие металлы (вольфрам, молибден, осмий), сохраняющие при высоких температурах свои механические свойства, легко окисляются, причем часто с катастрофической скоростью.  [c.74]

Существенно превосходят по жаропрочности существующие сплавы и направленно-кристаллизованные эвтектики типа Со—Nb , Со - 13% ТаС, Со—Hf , Со— r g, Ni—Nb , Ni—ТаС, Ni—Hf и др., в которых тугоплавкие карбиды образуют тонкие волокна, а твердый раствор дополнительно легирован хромом, алюминием и другими элементами. В карбидных эвтектиках с никелевой матрицей ее дополнительно упрочняют дисперсными частицами у -фазы, выделяющимися в процессе старения. Можно видеть, что многие эвтектические композиты на основе железа, кобальта и никеля представляют квазибинарные разрезы Me — тугоплавкое соединение тройных систем (см. табл. 18—21).  [c.172]


НЫХ, никелевых и кобальтовых сплавов, являются хром, кремний и алюминий. Эти элементы окисляются гораздо легче, чем железо, никель, кобальт, и потому способны давать в процессе окисления легированных ими сплавов устойчивую пленку окислов (окалину), обладающую высокой огнеупорностью. Из них особенное значение в качестве легирующего элемента имеет хром, окислы которого  [c.326]

Коррозионная стойкость циркония резко снижается под влияиием примесей азота, углерода, титана, алюминия. Железо, никель и хром увеличивают коррозионную стойкость циркония. Сплавы циркония с оловом, дополнительно легированные железом, никелем. или хромом, обладают весьма высокой коррозионной стойкостью.  [c.405]

Основные методы защиты металлов от окисления при высоких температурах основаны на легировании, т. е. на получении сплавов, более стойких к газовой коррозии, чем обычные, не содержащие специальных легирующих примесей. Кривая рис. 52 показывает, как существенно повышается коррозионная устойчивость стали при легировании ее сравнительно небольшими количествами алюминия. На рис. 53 приведены обобщающие данные по влиянию легирования железа кремнием, алюминием, хромом, титаном и никелем на повышение жаростойкости сплава [6. Очевидно сильное влияние 51, А1 и Сг на повышение жаростойкости стали и малое влияние N1 и Т1 (при исследованных содержаниях этих легирующих примесей).  [c.89]

Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Введение малых количеств (до 1%) многих легирующих зле-ментов приводит к понижению твердости, так как эти элементы являются раскислителями. Однако при одном и том же содержании легирующих элементов твердость молибденовых сплавов будет тем выше, чем меньше растворимость легирующих элементов в молибдене. Наибольшее повышение твердости дает легирование молибдена бором и кремнием. В меньшей мере повышает твердость молибдена никель, кобальт, железо, алюминий, хром, цирконий. Не-  [c.91]

Внутреннее окисление заключается в селективном окислении менее благородного компонента внутри сплава. Чаще всего это происходит на границах зерен. Указанное явление ведет к ухудшению прочностных характеристик сплава вследствие нарушенного сцепления зерен, придает сплаву хрупкость. Внутреннему окислению подвержены, в основном, сплавы на основе меди и серебра, легированные незначительными количествами алюминия, цинка, кадмия и бериллия. Этот вид коррозии встречается также у сплавов.железа, никеля и кобальта, в которых селективному окислению подвергаются добавки алюминия и хрома. Наиболее действенной предохранительной мерой против внутреннего окисления является увеличение концентрации легирующих добавок.  [c.71]

К чугунам относятся железоуглеродистые сплавы, содержащие свыше 2% углерода. Обычные чугуны содержат 2,5—4% углерода. Помимо железа и углерода, чугуны, подобно сталям, содержат также кремний, марганец, фосфор и серу, а в состав легированных чугунов входят, кроме того, еще хром, никель, алюминий.  [c.267]

Прецизионные сплавы изготовляют в основном на железной, никелевой и кобальтовой основах. Легирование железа, никеля и кобальта отдельно или небольшими добавками хрома, молибдена, вольфрама, ванадия, меди, алюминия и других металлов осуществляют для получения определенных физических и физико-механических свойств прецизионных сплавов. В то же время нельзя не отметить, что дополнительное легирование различно будет влиять на их коррозионную стойкость.  [c.160]

Ниже рассмотрены медные сплавы манганин (84 % Си, 4 % Ni, 12 % Мп) и константан (59 % Си, 40 % Ni, 1 % Мп). Оба сплава не являются жаростойкими, однако их применяют при повышенных температурах. Поэтому следует учесть, что при легировании чистой меди алюминием (10 %) или кремнием повышается стойкость ее к газовой коррозии. Добавки к меди марганца, железа, никеля и титана практически не влияют на жаростойкость ее, а хром оказывает даже отрицательное действие.  [c.167]


Образование указанных фаз определяется природой легирующего элемента и способностью к растворению его в феррите или аустените. Например, никель, кремний, алюминий и медь образуют с а-железом твердые растворы — легированный феррит, а хром, молибден и вольфрам — преимущественно карбидную фазу. Образование фаз в большой степени зависит от количества в сплаве углерода и характера термообработки.  [c.95]

Чтобы завершить исторический очерк, дадим короткий обзор современных направлений в электрополировке. 0.на применяется для полирования следующих металлов и металлоидов алюминия, сурьмы, серебра, висмута, кадмия, хрома, кобальта, меди, олова, железа (включая углеродистые, нержавеющие и другие легированные стали, ферросилиций, чугуны), бериллия, германия, золота, гафния, индия, свинца, магния, марганца, молибдена, никеля, ниобия, палладия, платины, тантала, тория, титана, вольфрама, урана, ванадия, цинка и циркония. К этому списку следует добавить большое число одно-и многофазных сплавов, ряд окислов металлов [21] и графит [22].  [c.18]

Электрохимические никелевые спла-вы типа монель и констаитан, представляющие собой сплавы никеля с медью и железом, имеют на своей поверхности химически нестойкую окисную пленку, которая легко восстанавливается в газовых средах, удаляется флюсованием и при высокотемпературной пайке в вакууме разлагается на кислород и металл. Поэтому пайка этих сплавов не вызывает трудностей. При пайке можно применять припои, флюсы и газовые среды, рекомендо-ванн ые для сталей и меди. Для пайки никелевых сплавов требуются специальные флюсы, поскольку поверхность сплавов, например никеля с хромом (нихромы), покрыта весьма стойкой окисной пленкой, содержащей окислы хрома. При легировании нихрома алюминием и титаном химическая стойкость окисной пленки возрастает, что влечет за собой ряд затруднений при пайке. Пайка жаропрочных сплавов на основе никеля в восстановительных газовых средах требует тщательной их очистки от остатков кислорода с помощью платинового или дуни-тового катализатора, а также дополнительного осушения до точки росы (-70 °С).  [c.254]

Спеченные материалы (САС). Получение сплавов с минималь. ным количеством окиси алюминия при использовании для легирования элементов переходной группы (железо, хром, никель и др.), образующих с алюминием малорастворимые в твердом состоянии интерметаллические соединения. В опытном производстве были получены спеченные сплавы [52, 54, 55] из легированных алюминиевых порошков, полученных распылением, содержащие до 0,5% AI2O3. Наиболее перспективными легирующими элементами являются Сг и Fe, незначительно растворяющиеся и имеющие пониженный коэффициент диффузии в алюминии. Эти элементы образуют с алюминием интерметаллические соединения СгА1, и FeAig, образующиеся в виде дисперсных частиц. Средние размеры их не превышают 0,5—1 м/с, расстояние между ними находится в этих же пределах, чем и объясняется повышенная прочность и стабильность структуры получаемых сплавов. Высокие скорости кристаллизации при распылении порошков и возможность значительного перегрева расплава способствуют удерживанию в частицах порошка (зерне) большей концентрации легирующего компонента в твердом растворе. После длительной выдержки при 400° С рекристаллизация отсутствует, в то время как в литом сплаве при этих условиях она полностью завершается.  [c.111]

Хорошей коррозионной стойкостью в воде обладает цирконий и его сплавы, которые к тому же имеют более высокую по сравнению с алюминием прочность при повышенных температурах. При изготовлении оборудования должен применяться цирконий, очищенный от примесей, особенно от азота. Коррозионная стойкость циркония в водяном паре заметно снижается при повышении давления. Практически применение чистого металла возможно до 300—350" С. Небольшие добавки (около 1%) железа, никеля, олова и хрома способствуют улучшению антикоррозионных свойств циркония. Аналогичный эффект достигается легированием циркония добавкой 2% палладия или 2% молибдена. Из сплавов циркония за рубежом широко применяют циркаллой-2 (1,5% Sn, 0,12% Fe, 0,05% Ni, 0,1% Сг). Этот сплав обладает коррозионной стойкостью в воде при температуре до 350° С.  [c.287]

По экспериментальным данным [105], предельная растворимость углерода в поверхностном слое и объеме отливки из сплавов на основе никеля, железа и кобальта составляет (%) 0,55 и 1,85, 2,0 и 2,06, 0,1 и 1,65 соответственно. Растворимость железа, циркония, церия, титана, хрома, магния в поверхностном слое и объеме отливок из алюминия составляет 0,05/0,17, 0,0/8,0, 0,0/9,0, 0,15/0,32, 0,7/5,8, 17/36 соответственно. При этом необходимо учитывать, что при избытке поступающих элементов в поверхностном слое отливки образуются соединения типа Me jj, Ме Н, , NVe Oy, Me Sy и другие твердые фазы, наличие которых резко увеличивает твердость, трещиночувствительность, физическую и химическую неоднородность отливки. По активности образования новых твердых фаз в поверхностном слое первое место занимают отливки из титана и его сплавов, второе — отливки из чугуна, третье — из легированных сталей. Кроме того, если к отливкам предъявляются высокие требования по теплоотдаче в условиях эксплуатации, то при выборе металла для отливок с развитой поверхностью учитывают его теплопроводность.  [c.12]

Тамман и Кестер [156] установили, что коррозия цинка, кадмия, олова, алюминия, сурьмы, висмута, хрома, железа, кобальта и никеля в атмосфере сухого сероводорода является ничтожной. К аналогичным выводам пришли Аккерман, Тамаркина и Шултин [157], изучавшие поведение в сухом сероводороде алюминия, латуни, железа, чугуна и легированных сталей. При комнатной температуре указанные сплавы не корродировали, при 100 наблюдалось уже незначительное усиление коррозии. Шкловский [158], изучавший подробно поведение металлов в сухом и влажном сероводороде, также считает, что сухой сероводород при нормальной температуре слабо действует на металлы.  [c.193]


ИЛИ азота, ухудшающего механические свойства сплава. С этой точки зрения полезно легирование металлами, снижающими растворимость кислорода и азота, напри мер, молибденом и вольфрамом. Максимальной жаростой костью обладают сложнолегированные сплавы. Напри мер, повышение жаростойкости сплавов Nb—Ti дости гают легированием их алюминием, вольфрамом, хромом цирконием, никелем и иттрием. Сплав на основе ниобия содержащий Ti — 25, А1 — 8, Y — 0,2 %, окисляется при 1100 °С со скоростью 0,15 мг-см -ч . Скорость окисления при 1100 °С сплава, содержащего Ti — 20, W— 10, Ni — 4%, равна 1,4 мг-см >ч" . Таким образом, достигнуто примерно 100-кратное увеличение жаростойкости ниобия. Однако жаростойкое легирование часто приводит к снижению жаропрочных свойств. Этого недостатка лишены сплавы Nb—W—Ti, дополнительное легирование которых металлами группы железа снижает скорость окисления при 1200 °С до 2,7 мг-см -4" . К этой  [c.429]

В технике широко используются жаропрочные сплавы на основе железа, кобальта и никеля. К ним относятся аустенитные хромоникелевые, хромомарганцевые стали, дополнительно легированные алюминием, титаном, кремнием, молибденом и другими элементами. Высокой жаропрочностью и стойкостью к газовой высокотемпературной коррозии отличаются никелевые сплавы, содержащие 30—40% хрома, алюминий, титан, молибден, ванадий и другие легирующие элементы. Эти сплавы типа нихромови нимоников имеют высокую жаропрочность до 700—900° С. Плотная кубическая структура у-железа, умарганца, никеля и р-кобальта, обусловленная близостью электронного строения их атомов, имеющих заполненнук> нерасщепленную d -остовную оболочку, идентичную р -оболочке,. близость атомных радиусов и концентраций коллективизированных электронов (2 эл/атом) приводит к широким возможностям легиро-  [c.39]

Чугуны, как и стали, представляют собой сплавы железа с углеродом. Отличаются чугуны от сталей прежде всего значительно большим содержанием углерода содерлоние углерода в сталях не превышает 2%, а в подавляющем большинстве сталей его меньше 1,5%, тогда как в чугунах содержится больше 2% углерода — обычно 2,5—4%. Помимо углерода, чугуны, подобно сталям, содержат кремний, марганец, фосфор и серу, а легированные чугуны также никель, хром, медь, алюминий и другие элементы.  [c.120]

К магнитно-твердым материалам относятся а) сплавы, закаливаемые на мартенсит (стали, легированные хромом, вольфрамом или кобальтом) б) железо-никель-алюминйевые сплавы дисперсионного твердения в) ковкие сплавы иа основе железа, кобальта и,ванадия (виккалой), железа, никеля, меди й др. г) сплавы с очень большой коэрцитивной силой на основе благородных металлов (платина — железо серебро — марганец — алюминий и др.) д) металлокерамические материалы, получаемые прессованием порошкообразных компонентов с последующим обжигом отпрессованных изделий (магнитов) е) магнитно-твердые ферриты ж) металлопластические материалы, получаемые из прессовочных порошков, состоящих из частиц магнитно-твердого материала и связующего вещества (синтетическая смола).  [c.296]

Чистая медь электро- и теплопроводна, но нежаропрочна. На-гартованная медь из-за низкой температуры рекристаллизации (150—200°) также применяется редко. Чаще используют различные сплавы меди с добавками легирующих элементов (табл. 22). Легирование меди кадмием, хромом, бериллием, алюминием, цинком, цирконием и магнием, мало снижающими электропроводность, повышает ее твердость в нагретом состоянии, а железо, никель и кремний вводят в медь для упрочнения. Электропроводность сплавов оценивается в % по сравнению с проводимостью чистой отожженной меди, имеющей 0,017241 ,  [c.163]

Сплавы, наиболее склонные к обрастанию алюминий и его сплавы, сталь нелегированная, сталь медистая, марганцовистая, нержавеющие стали, высоконикелевые стали, сплавы железа с кремнием, стеллиты, сплавы на никелевой основе, легированные медью (монель-металл), хромом (инконель), различные сплавы типа гастеллой, магний и его сплавы, свинец, олово и сплавы РЬ—5п, алюминиевая бронза с никелем (4% А1, 4% N1, 92% Си), покрытия кадмиевые, хромовые, азотированная сталь, кобальт.  [c.458]

Коррозионностойкие (нержавеющие) стали применяют для изготовления деталей машин и конструктивных элементов (в основном сварных), работающих в различных афессивных средах (влажная атмосфера, морская вода, кислоты, растворы солей, щелочей, расплавы металлов). Легирование коррозионностойких сталей преследует достижение высокой коррозионной СТОЙКОСТИ в рабочей среде и обеспечение заданного комплекса физико-механических характеристик. Высокая коррозионная стойкость обеспечивается переходом стали в пассивное состояние. Легко пассивирующимися металлами являются алюминий, хром, никель, титан и др. Хром один из основных легирующих элементов коррозионностойких сталей и обычно находится в пределах от 11 до 30 %. Никель в сплавах с железом повышает коррозионную стойкость, стабилизирует аустенитную структуру и позволяет создать аустенитные хромоникелевые стали с высокой коррозионной стойкостью в сильных афессивных кислотах (соляной, серной).  [c.393]

Легирование циркония оловом (до 2,5%), железом, никелем или хромом (до 1,0%) ревко улучшает антикоррозионные качества циркония. Для получения сплавов циркония, применяемых главным образом для конструктивного оформления ядерных реакторов, используют такие легирующие элементы, как алюминий, ниобий, молибден и др.  [c.134]

К высоколегированным сталям относят сплавы на основе железа, содержащие более 8—10% легирующих элементов. Озгласно ГОСТу 5632—71 наибольшую группу составляют нержавеющие стали и сплавы, легированные хромом, никелем, молибденом, кремнием, марганцем, титаном, ниобием, алюминием и другими элементами. В зависимости от степени легирования изменяются структурный состав и свойства сталей, в частности их свариваемость. Обилие марок сталей послужило поводом для их классификации по таким признакам, как структурный состав, процентное содержание хрома или никеля, область применения (коррозионностойкие, жаропрочные, высокопрочные и т. п.). В табл. 1.14 приведены наиболее распространенные марки высоколегированных сталей, применяемых в сварных конструкциях.  [c.347]

Основными легирующими компонентами химически стойких сплавов на железной основе являются хром, кремний, никель. Основными ком понентами для жаростойких сплавов являются хром, алюминий, кремний. Легирующие добавки к железу 51, N1 и, особенно, Сг сильно облегчают переход металла в пассивное состояние. При достаточном легировании сплавы пассивируются уже непосредственно кислородом воздуха или раствора, как это имеет место для чистого хрома, и, таким образом, сплав приобретает стойкую пассивность (сплав становится са-мопассиви рующимся).  [c.462]

Работы, проведенные Л. А. Чатыняном, Н. Ф. Лашкоирядом других исследователей [1—4], показали перспективность для этих условий литых сплавов на основе никеля, легированных хромом, железом, кремнием, бором, вольфрамом, алюминием и титаном.  [c.105]

Высокой коррозионной стойкостью Б растворах едкого натра обладают вольфрам, золото, кобальт, магний, молибден, никель и его сплавы, серебро, платина, цирконий. Совершенно нестойки алюминий и его сплавы. Железо и углеродистые стали в разбавленных холодных растворах едкого натра пассивируются. С повышением концентрации и температуры щелочи стойкость их заметно снижается, что связано с усилением растворимости образующихся продуктов коррозии — ферритов и ферратов. В горячих ( 90° С) растворах, содержащих от 15 до 43% NaOH, углеродистая сталь в напряженном состоянии подвергается коррозионному растрескиванию. В присутствии окислителей опасная область концентраций расширяется [35а]. Легирование стали хромом, никелем, молибденом способствует повышению ее стойкости — расширяются области температур и концентраций едкого натра, в которых сталь сохраняет устойчивое пассивное состояние. Сталь Х18Н10Т в растворах, содержащих 320—340 г/л NaOH, до 160° С корродирует СО скоростью не более 0,05 мм/еод.  [c.70]



Смотреть страницы где упоминается термин Сплавы никель-хром и никель-железо-хром, легированные алюминием : [c.220]    [c.293]    [c.235]    [c.48]    [c.46]    [c.227]    [c.882]    [c.304]   
Смотреть главы в:

Сплавы для нагревателей  -> Сплавы никель-хром и никель-железо-хром, легированные алюминием



ПОИСК



Алюминий и сплавы алюминия

Железо и сплавы —

Железо сплав с никелем

Железо — алюминий

Железо — никель

Железо — хром

Железо — хром — никель

Железо — хром, сплавы

Никель

Никель и сплавы никеля

Никель хромом

Сплав алюминия

Сплавы алюминия и железа

Сплавы железа и сплавы никеля

Сплавы легированные

Сплавы никель—хром—железо

Сплавы никеля

Сплавы хром—алюминий—железо

Хром и сплавы хрома

Хрома

Хрома сплавы

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте