Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирование жаростойкое

Дополнительное легирование жаростойких сталей кремнием (до 2 -  [c.491]

Лаки химически стойкие 2 164 Легирование жаростойкое 1 417 Ликвация 1 473  [c.777]

Автоклавы, у которых рабочая температура стенки выше 475°, отливаются из легированных жаростойких сталей (молибденовая, хромоникелевая и т. п.), обеспечивающих требуемые свойства при высокой температуре.  [c.118]

Температура впускных клапанов во время работы достигает 250—450 °С, а выпускных 700—950 °С. Высокие температуры отрицательно влияют на механические свойства материала, способствуют эрозии и газовой коррозии клапана, короблению его головки все это может вызвать неплотное прилегание головки клапана к седлу и заедание стержня в направляющей втулке. Поэтому материал для клапанов должен обладать высокими механическими свойствами при высоких температурах и хорошей износостойкостью. В качестве материала для клапанов применяются легированные, жаростойкие стали, особенно для выпускных клапанов. Клапаны изготовляются из кованых или штампованных заготовок. Иногда применяются составные клапаны, у которых стержень и головка выполнены из разных материалов в этом случае элементы клапана соединяются сваркой или при помощи резьбы (реже). Упрочнения фаски можно достичь наплавкой стеллита. В особо напряженных в тепловом отношении двигателях для лучшего отвода теплоты от клапана головку и стержень делают полыми, а полость заполняют на одну треть специальными плавящимися солями или металлическим натрием (последний плавится при 97 °С, а кипит — при 885 °С). При нагреве клапана заполняющее его полость вещество плавится получающаяся в результате жидкость при энергичном взбалтывании вследствие возвратно-поступательных движений клапана омывает его  [c.101]


Впускные клапаны изготовляют из хромистой, хромованадиевой или хромоникелевой сталей. Выпускные клапаны изготовляют из легированных жаростойких сталей.  [c.54]

Состав электрода выбирают близким составу свариваемого металла. Стальные электроды по назначению делят на четыре класса для сварки углеродистых и легированных конструкционных сталей, для сварки легированных жаростойких сталей, для сварки высоколегированных сталей и для наплавки поверхностных слоев с особыми свойствами.  [c.142]

При выплавке легированных сталей в дуговых печах в сталь вводят легирующие элементы в виде ферросплавов. Порядок ввода определяется сродством легирующих элементов к кислороду (см. с. 32). В дуговых печах выплавляют высококачественные углеродистые стали — конструкционные, инструментальные, жаропрочные и жаростойкие.  [c.39]

Механические свойства легированных литейных сталей определяются количеством легирующих элементов. Легирование значительно повышает механические и эксплуатационные свойства (жаропрочность, коррозионную стойкость, износостойкость и т. д.). Например, марганец повышает износостойкость, хром — жаростойкость, никель—коррозионную стойкость и т. д.  [c.165]

Осуществление одного из этих четырех случаев определяется значениями констант Ь и Я. Однако эти величины зависят от темпе ратуры и сплавы при разных температурах могут отвечать разным случаям. Наибольший практический интерес с точки зрения повышения жаростойкости путем легирования представляют случаи 4 и особенно 2, приводяш,ие к такому образованию защитного слоя, когда с ростом его толщины диффузионный поток одного из металлов делается малым по сравнению с потоком другого. Если при этом в образующемся на поверхности почти чистом окисле второго металла и ( д)лг/ станут достаточно малыми,  [c.95]

ТЕОРИИ ЖАРОСТОЙКОГО ЛЕГИРОВАНИЯ  [c.111]

Следует указать на три наиболее обоснованные теории жаростойкости легирования в зависимости от предполагаемого механизма действия легирующей добавки  [c.111]

Таким образом, изложенную выше теорию жаростойкого легирования металлов можно представить в виде следующих требований, предъявляемых к легирующему элементу Me  [c.112]

Данная теория позволяет предсказать влияние низкого. легирования различными элементами на жаростойкость основного металла.  [c.112]

Если скорость окисления металлов определяется не диффузионными, а другими процессами или при легировании в окисной пленке образуется новая фаза, изложенные выше принципы жаростойкого легирования неприменимы.  [c.113]

Эта теория жаростойкого легирования находится в хорошем соответствии с целым рядом случаев окисления сплавов, когда действительно образуется защитный окисел легирующего элемента (см. с. 95), и позволяет на основании некоторых свойств элементов и их окислов качественно оценить пригодность различ-  [c.113]


При низком легировании хромом, кобальтом, кремнием и алюминием (рис. 75), которые повышают температуру появления в окалине вюстита, возрастает жаростойкость стали. Ниже приведены  [c.115]

Изложенная выше третья теория позволяет предсказывать влияние легирования различных элементов на жаростойкость стали.  [c.116]

Рассмотренные три теории жаростойкого легирования металлов не исключают, а дополняют друг друга и дают возможность не только теоретически обосновать существующие сплавы, но и более рационально подойти к разработке рецептуры новых жаростойких сплавов.  [c.116]

Естественно, что при жаростойком легировании должно быть обращено внимание на доступность легирующего элемента и экономичность легирования, а также на обеспечение требуемых свойств сплава, в том числе технологичности (обрабатываемости) и необходимой жаропрочности.  [c.116]

Основой жаростойкого легирования стали является хром, а для дополнительного повышения жаростойкости вводят кремний или алюминий, или оба элемента в количествах до 4—5%.  [c.138]

Аппаратура и методика работы Испытанию подвергаются по два замаркирсванных образца из углеродистых конструкционной и инструментальноР, сталей и легированной жаростойкой стали при температурах 400 С. 600 с. 800 С и 900 С. Нагрев и выдержку испытуемых сталей проводят в уста-  [c.30]

Сплавы I) легирование жаростойких сплавов (1 % V), повышающее предел рабочей температуры с ПООдо 1370 С 2) на основе магния и алюминия с повышенными механическими свойствами 3) на основе железа с улучшенной обрабатываемостью, стойкостью к рекристаллизации и к окислению при высоких температурах  [c.357]

Особое значение приобретают мощные пылеугольные горелки для котлов большой мощности. Одновременно с этим необходимо проводить научно-исследовательские работы по созданию новых мощных и более совершенных газомазутных горелок, допускающих широкий диапазон изменения производительности и обеспечивающих высокую надежность и экономичность сжигания газа и мазута при малых избытках воздуха (а = 1,01- -L,03). Необходимо также обеспечить возможность быстрого автоматического перехода с работы на газе на мазут и обратно. Необходимо также обратить серьезное внимание на разработку эффективных методов борьбы с газовой коррозией экранных труб и на улучшение способов их шипования с применением шипов из легированных жаростойких сталей.  [c.127]

Видимая пленка окислов на поверхности углеродистой стали появляется при температурах выше 300° С. По мере повышения температуры скорость окисления продолжает увеличиваться, образуется окалина (РезО ) начиная с температуры 570° С, скорость окисления резко возрастает и поверхность стали покрывается слоем окалины, растрескивающимся, обсыпающимся и плохо предохраняющим поверхность от дальнейшего окисления. При температурах выше 570° состав окалины представляет собой смесь окислов РегОз, FegO FeO. Для предотвраш.ения явления окалинооб-разования следует аппаратуру, работающую при высоких температурах, изготовлять из легированных жаростойких сталей. В некоторых случаях хорошие результаты получаются при алитировании или хромировании поверхности стали.  [c.584]

Высоколегированные стали и сплавы по сравнению с менее легированными обладают высокой хладостойкостью, жаропрочностью, коррозионной стой костью и жаростойкостью. Эти важнейшие материалы для химического, нефтяного, энергетического машино-строенпя и ряда других отраслей промышлепности используют при изготовлении конструкций, работающих в широком диапазоне температур от отрицательных до положительных. Несмотря на общие высокие свойства высоколегироваьшых сталей, соответствующий подбор состава легирования определяет их основное служебное назначение. В соответствии с этим их можно разделить на три группы коррозионно-стойкие, жаропрочные и жаростойкие (окалиностойкие). Благодаря их высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы применяют в ряде случаев и как хладостойкие.  [c.279]

Свариваемость рассматриваемых сталей и сплавов затрудняется мпогокомпонеитностью их легирования и разнообразием условий эксплуатации сварных конструкций (коррозионная стойкость, жаростойкость или жаропрочность). Общей сложностью сварки является предупреждение образования в шве и околошовной зоне кристаллизационных горячих трещин, имеющих межкристаллит-пый характер, наблюдаемых в виде мельчайших микронадрывов и трещин. Горячие трещины могут возникнуть и при термообработке или работе конструкции нри повышенных температурах. Образование горячих трещин наибо,лее характерно для крупнозернистой структуры металла шва, особенно выраженной в многослойных швах, когда кристаллы последующего слоя продолжают кристаллы предыдущего слоя.  [c.286]


В тябл, 68 приведены составы сталей и сплавов, применяемых как жаростойкие. Предельная температура эксплуатации указана в таблице и показывает температуру, выше которой сплав пе долл<ен нагреваться при работе во избежание быстрого окисления. Поскольку повышение предельной температуры эксплуатации создается за счет дорогого легирования, то следует точно определять температурные условия работы металла и выбирать в соответствии с этой таблицей и другими справочными данными жаростойкий сплав.  [c.451]

Легирование является наиболее желательным способом повышения сопротивления окислению этих металлов. Их низкая жаростойкость обусловлена легкоплавкостью и летучестью окислов (Мо, V, Re), неблагоприятным отношением объемов окисла и металла (Та, Nb, W —см. табл. 4), летучестью окислов, обладающих относительно низким давлением диссоциации (1г, Ru, Os), и испаре-  [c.117]

Хром, алюминий и кремний (см. рис. 98) сильно замедляют окисление железа из-за образования высокозащитных окисных пленок. Эти элементы широко применяют для легирования стали в целях повышения ее жаростойкости. Хром, введенный в сталь в количествах до 30%, значительно повышает жаростойкость, но высокохромистые стали являются ферритными и трудно поддаются термообработке в отличие от мартенситных и полуферритных низкохромистых сталей. Алюминий и кремний, которые вводят в сталь в количестве соот-0 и 5%, еще сильнее повышают ее жаростойкость.  [c.137]

Как установил А. М. Зубов, в условиях термоциклирования и износа чугунных прессформ фарных рассеивателей способ отливки заготовок и размеры графитовых включений оказывают большее влияние на жаростойкость, чем низкое легирование серого чугуна. Повысить жаростойкость серых чугунов можно присадками, способствующими измельчению графитовых включений, такими как Si, Ni, Си, или отливкой чугуна в металлическую форму, что обеспечивает прочное врастание образующихся при окислении чугуна окисных пленок в металл и зарастание выходов на поверхность графитовых включений. Условиями, обеспечивающими эти процессы, являются мелкозернистость и плотность чугуна, равномерное распределение виходов графитовых включений вдоль окие-ляемой поверхности, средняя длина графитовых включений у )яб-  [c.139]

Защита металлов от газовой коррозии может быть достигнута различными способами защитные покрытия, уменьщение агрессивности газовой среды и др. Наиболее эффективным способом защиты от окисления при высоких температурах является жаростойкое легирование, т. е. введение в состав сплава компонентов, повыщающих его жаростойкость. Основными элементами, способствующими созданию защитного слоя на обычных железоуглеродистых, никелевых и других сплавах, являются хром, алюминий и кремний. Эти элементы окисляются при высоких температурах на воздухе легче, чем легируемый металл, и образуют хорошую защитную окалину.  [c.146]


Смотреть страницы где упоминается термин Легирование жаростойкое : [c.491]    [c.584]    [c.106]    [c.243]    [c.66]    [c.573]    [c.281]    [c.287]    [c.289]    [c.299]    [c.290]    [c.646]    [c.102]    [c.114]    [c.118]    [c.141]    [c.147]    [c.116]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.417 ]



ПОИСК



Газовая коррозия и основы жаростойкого легирования

Жаростойкое легирование тугоплавких металлов

Жаростойкость

Легирование

Теории жаростойкого легирования

Теория жаростойкого легировани

Условия жаростойкого легирования



© 2025 Mash-xxl.info Реклама на сайте