Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отрыв пограничного слоя, сопротивление тел

ОТРЫВ ПОГРАНИЧНОГО СЛОЯ, СОПРОТИВЛЕНИЕ ТЕЛ  [c.181]

G помощью формулы (8-24) на основе непосредственных измерений распределения давления по контуру профиля было подсчитано сопротивление давления для семейства симметричных профилей, показанных на рис. 15-3. Сопротивление трения может быть получено как разность между измеренным полным лобовым сопротивлением и измеренным сопротивлением давления. Отношение сопротивления трения к полному лобовому сопротивлению показано на рис., 15-4. Для вытянутых (тонких) сече-йий профилей сопротивле-1,0 ние трения составляет 70— 80% от полного для круглого цилиндра, однако, оно составляет только около 3% от полного. В последнем случае происходит отрыв пограничного слоя, причем точки отрыва лежат перед диаметральным сечением цилиндра. В результате вся кормовая часть оказывается в зоне пониженного давления в следе, что и приводит к высокому сопротивлению формы. Сопротивление поверхности почти целиком определяется пограничным слоем до точки отрыва. Теория движения идеальной (невязкой) жидкости предсказывает симметричное распределение давления и нулевое значение лобового сопротивления. Различия, имеющие место между случаями обтекания цилиндрического тела идеальной и вязкой жидкостями, иллюстрируются на рис. 15-1 и обсуждаются ниже.  [c.402]


Отрыв пограничного слоя относится к числу вредных явлений, вызывающих резкое повышение сопротивления обтекаемых жидкостью тел, опасные вибрации их, а в случае внутренних течений по трубам и каналам к уменьшению полезного расхода жидкости, возрастанию потерь энергии и уменьшению коэффициента полезного действия.  [c.448]

Сравним обтекание диска, шара и тела каплеобразной формы. Картины ламинарного обтекания показаны на рисунке 10.38, а, б, 5. Из рисунка видно, что диск наиболее резко деформирует линии тока, особенно.в окрестности точки В. В окрестности этой точки в пограничном слое диска существуют громадные градиенты скорости, а следовательно, и большие силы трения. Поэтому точка С, где происходит остановка частиц, т. е. отрыв пограничного слоя, расположена совсем близко к точке В (рис. 10.38, г), вследствие чего вся задняя поверхность диска оказывается в контакте с областью пониженного давления. В этом случае сила лобового сопротивления наибольшая, какая только может быть у разных тел при данном потоке.  [c.304]

По этой причине, а также вследствие образования поверхности раздела при отрыве пограничного слоя тела, при обтекании которых возникает отрыв пограничного слоя, оказывают большое сопротивление течению жидкости. При этом сопротивление, вообще говоря, будет тем меньше, чем уже турбулентный след, т. е. чем дальше на поверхности тела расположена точка отрыва. Прн достаточно больших числах Рейнольдса, при которых, однако,  [c.72]

Наличие значительной диссипации энергии во всем объеме турбулентного следа, а также образование поверхности раздела при отрыве пограничного слоя приводят к тому, что тела, при обтекании которых возникает отрыв пограничного слоя, оказывают большое сопротивление набегающему потоку. При этом сопротивление, вообще говоря, будет тем меньше, чем уже турбулентный след, т. е. чем дальше на поверхности тела расположена точка отрыва. При достаточно больших числах Рейнольдса, при которых, однако, пограничный слой до точки отрыва остается ламинарным, коэффициент сопротивления  [c.87]

Верхний предел интегрирования зависит от характера обтекания тела. Если ламинарный пограничный слой распространяется на всю поверхность, то — продольный размер тела вдоль оси х если имеет место отрыв, то определяет точку отрыва если в пределах поверхности имеет место переход к турбулентному режиму, то определяет точку перехода, за которой сопротивление трению определяется по зависимости турбулентного слоя.  [c.365]


На рис. 27.7 [81] представлены кривые изменения локального числа Нуссельта при поперечном обтекании цилиндра в зависимости от угла ф для различных чисел Рейнольдса в условиях постоянного теплового потока по поверхности. Из рисунка видно, что число Нуссельта уменьшается, начиная от передней критической точки, достигает минимума при некотором угле ф и далее вниз по потоку резко возрастает. В передней критической точке толщина ламинарного пограничного слоя мала и поэтому локальные коэффициенты теплоотдачи и числа Нуссельта велики. По мере удаления от критической точки вниз по потоку растет толщина пограничного слоя, вместе с ней растет его тепловое сопротивление и коэффициент теплоотдачи уменьшается. В зоне отрыва пограничного слоя коэффициент теплоотдачи вновь резко возрастает. В этой области происходят весьма сложные и еще до конца не ясные явления. Здесь, видимо, происходит периодический процесс — утолщение пограничного слоя, его отрыв и унос оторвавшейся массы жидкости вниз по потоку. Этот периодический процесс непрерывно повторяется. Можно ожидать, что чем больше таких процессов происходит в единицу времени, тем интенсивнее теплоотдача, так как в момент отрыва слоя тепловое сопротивление в этой зоне значительно уменьшается. Очевидно, что применить гидродинамическую теорию теплообмена (см. гл. 24) в этой области невозможно. На интенсивность теплоотдачи в зоне отрыва влияют число Рейнольдса, форма и качество поверхности (шероховатость) обтекаемого тела, физические константы жидкости.  [c.321]

Короче говоря, теория пограничного слоя включает в себя упрощенные уравнения Навье — Стокса, основанные на малости некоторых членов вблизи твердой поверхности, и надлежащего сращивания течения вблизи поверхности с внешним потоком. Эта теория применялась к задачам как турбулентного, так и ламинарного течения, и получено большое разнообразие решений 145, 38]. К сожалению, поток за обтекаемыми телами после точки отрыва не может рассматриваться в рамках теории пограничного слоя. Таким образом, не существует теоретической оценки сопротивления для обтекаемых тел при числах Рейнольдса, при которых оказывается возможным отрыв потока.  [c.58]

Здесь, видимо, происходит периодический процесс — утолщения пограничного слоя, его отрыв и унос оторвавшейся массы жидкости вниз по потоку. Этот периодический процесс непрерывно повторяется. Можно ожидать, что чем больше таких процессов происходит в единицу времени, тем интенсивнее теплоотдача, так как в момент отрыва слоя тепловое сопротивление в этой зоне значительно уменьшается. Очевидно, что применить гидродинамическую теорию теплообмена (гл. VII) в этой области невозможно. На интенсивность теплоотдачи в зоне отрыва влияют число Рейнольдса, форма и качество поверхности (шероховатость) обтекаемого тела, физические константы жидкости.  [c.213]

Вопрос об определении положения точки Отрыва турбулентного пограничного слоя нуждается еще в дополнительных теоретических и экспериментальных исследованиях. Можно все же думать, что предложенное приближенное решение правильно оценивает характер явления. Сформулированный только что вывод относительно взаимного расположения точек отрыва ламинарного и турбулентного пограничных слоев хорошо подтверждается опытами. Достаточно вспомнить явление кризиса обтекания , объяснение которого было дано в 92. Точка отрыва ламинарного слоя при больших докритических значениях рейнольдсова числа не меняет своего расположения, что приводит практически к установившейся картине. плохого обтекания шара и сохранению коэффициента сопротивления на уровне сравнительно большого его значения. Как только точка перехода в своем движении вверх по течению достигнет точки отрыва, отрыв теряет свой ламинарный характер и сразу же начинает перемещаться вниз по потоку, улучшая тем самым обтекание тела и уменьшая его сопротивление. В конце кризиса точка отрыва установившегося турбулентного пограничного слоя располагается значительно ниже по потоку, чем точка отрыва ламинарного слоя, и в дальнейшем уже, если и перемещается, то крайне незначительно (за счет косвенных причин, связанных с изменением давлений при утолщении слоя и др.).  [c.637]


Этот частный случай отрыва потока может быть применен для практических приложений с использованием преимуществ отрывного течения. Отрыв такого типа может существовать как в ламинарных, так и турбулентных течениях, включая взаимодействие скачка уплотнения с пограничным слоем, присоединение оторвавшихся слоев и пульсационные нестационарные течения. Вначале перечисляются некоторые возможные практические приложения затем описываются особенности механизма течения. Наконец дается описание подробной картины течения на основе экспериментальных наблюдений. Экспериментальные исследования проводились большей частью на цилиндрических моделях с носовыми частями, имеющими полусферическую форму, плоскую форму, полусферическую форму с плоским срезом, а также форму оживала и усеченного конуса. Интервал исследуемых чисел Маха набегающего потока 1,75 Моо 14 ж чисел Рейнольдса, вычисленных по диаметру цилиндрической части тела, 0,85-10 Re 1,5-10 . Течение около таких осесимметричных моделей при нулевом и отличном от нуля углах атаки будет рассмотрено более тщательно после рассмотрения свойств течения около двумерных поверхностей при нулевом угле атаки. Коэффициенты сопротивления, подъемной силы и т. п. определялись каждым исследователем по-своему, что будет упомянуто в соответствующих разделах.  [c.218]

Ни одна из известных теорий не учитывает влияние вязкости (и следовательно, пограничного слоя) или поверхностного натяжения. В основном влияние этих факторов на форму каверны и сопротивление учитывается условием сопряжения. Влияние пограничного слоя определяется числом Рейнольдса поверхностное натяжение должно затягивать отрыв и, следовательно, уменьшать наклон стенки каверны в точке отрыва. Шот [70] учитывал влияние поверхностного натяжения на двумерные кавитационные течения около тонких тел в рамках линейной теории. Он обнаружил, что если форма тела допускает плавный отрыв, то положение точки отрыва определяется условием непрерывности наклона касательной. Однако на телах с тупыми кормовыми частями такой отрыв невозможен и линия тока, совпадающая с поверхностью каверны, при отрыве от тела имеет излом.  [c.233]

Профильное сопротивление обтекаемого тела состоит из сопротивления трения и сопротивления давления. У хорошо обтекаемых тел нет отрыва пограничного слоя, поэтому сопротивление трения является основным. У плохо обтекаемых тел отрыв потока вызывает большое сопротивление давления, которое является основным.  [c.39]

При обтекании плоской пластинки, расположенной по потоку (угол атаки а = 0°), ламинарное течение в пограничном слое поддерживается на длине считая от передней кромки, определяемой числом Рейнольдса З-Ю —5-10 . После этого течение переходит в турбулентное. Точка перехода ламинарного пограничного слоя в турбулентный с увеличением числа Рейнольдса перемещается от задней кромки пластинки к передней. Сопротивление пластинки растет, и наибольшим оно становится, когда точка (зона) отрыва приближается к передней кромке. Важно отметить, что чем дольше сохраняется ламинарное течение вдоль пластинки, тем меньше ее сопротивление. Поэтому задача создания хорошо обтекаемых тел заключается в выборе такого профиля, у которого переход в турбулентное обтекание или отрыв вихрей происходит вблизи задней кромки тела.  [c.41]

Видно, что выше значения Ве г 1 аналитическое описание поля течения усложняется. Становятся существенными инерционные силы, и при Ве 10 происходит отрыв пограничного слоя ) линии тока скручиваются и образуют стационарное вихревое кольцо у кормовой части сферы. Дальнейшее возрастание числа Ве приводит к увеличению размеров и интенсивности вихря. При Ве 100 систе.ма вихрен распространяется за сферой на расстояние около одного диаметра [7801. Влияние инерционных сил продол кает расти, п при Ве 1-50 систе.ма вихрей начинает колебаться. В ла.минарнодг потоке при Ве р 500 систе.ма вихрей отделяется от тела и образует след [822]. Это число Рейнольдса называется нгпкним критическим чпс,лоы Рейнольдса. Вихревые тсольца непрерывно образуются и отделяются от сферы, вызывая периодические изменения поля течения и мгновенной величины силы сопротивления. Линия отрыва пограничного слоя на сфере перемещается, что приводит также к флуктуация.м силы трения.  [c.32]

При обтекании тела со скругленными кромками идеальной жидкостью на теле имеются две точки (критические точки), в которых скорость равна нулю, а давление достигает максимального значения. Следовательно, при движении жидкости вдоль поверхности тела давление сначала падает, а затем вновь возрастает, т. е. при обтекании тела обязательно возникают диффузорные участки р1йх > 0). При обтекании тела реальной, т. е. вязкой, жидкос-стью в диффузорной области в той или иной точке может возникнуть отрыв пограничного слоя от твердой стенки. Отрыв обычно приводит к нежелательным последствиям возрастанию сопротивления и появлению нестационарных аэродпнамических сил, вызывающих вибрацию конструкции. В связи с этим большое практическое значение имеет оценка возможности безотрывного обтекания и установление режимов, при которых появляется отрыв.  [c.181]

Все изложенное относится к теории ламинарного пограничного слоя, которая находится во вполне удовлетворительном согласии с экспериментом и качественно подтверждается также имеющимися немногочисленными точными решениями уравнений Навье — Стокса. Однако на самом деле при повышении скоростей пограничный слой переходит в турбулентное состояние, что меняет весь режим течения (реальные струи, как правило, всегда турбулентны). Первоначально с этим явлением столкнулись в связи с экспериментальным исследованием коэффициента лобового сопротивления шара (Дж. Костанци, Л. Прандтль, Г. Эйфель). Оказалось, что при достижении чисел Рейнольдса порядка 10 дальнейшее увеличение числа Рейнольдса приводит к резкому падению коэффициента сопротивления шара примерно в два раза. Этому удивительному явлению дал объяснение Л. Прандтль Он показал, что при достижении указанных чисел Рейнольдса отрыв пограничного слоя вызывает его турбулизацию и последующее присоединение, что задерживает в целом отрыв потока от обтекаемого тела и тем самым резко снижает сопротивление ( кризис обтекания и сопротивления.)  [c.298]


Жидкость, заторможенная в пограничном слое, не во всех случаях прилегает ко всей обтекаемой стенке тела в виде тонкого слоя. Бывают случаи, когда пограничный слой сильно утолщается вниз по течению и при этом в нем возникает возвратное течение. Это влечет за собой вынос жидкости, заторможенной в пограничном слое, во внешнее течение, вследствие чего последнее оттесняется от тела. В таких случаях говорят, что пограничный слой отрывается от тела. Отрыв пограничного слоя всегда связан с сильным образованием вихрей и с большой потерей энергии на кормовой части обтекаемого тела. Эти явления наблюдаются в первую очередь у плохо обтекаемых, тел, например у круглого цилиндра и шара. В результате за кормо-вой частью таких тел образуется область сильно замедленного течения (так называемая застойная область), в которой распределение давления сильно отличается от распределения давления, соответствующего течению без трения (это ясно видно из рис. 1.9 и 1.10, изображающих распределение давле-.ния для круглого цилиндра и шара). Именно это измененное, по сравнению со случаем идеальной жидкости, распределение давления, связанное с отрывом пограничного слоя, и является причиной большого сопротивления плохо обтекаемых тел.  [c.37]

Таким образом, для вычисления сопротивления трения требуется знание градиента скорости на стенке. Этот градиент может быть определен только путем интегрирования дифференциальных уравнений пограничного слоя. Если отрыв пограничного слоя возникает до задней кромки обтекаемого тела, то вычисление по формуле (7.20) следует произвести только до точки отрыва. Далее, если ламинарный пограничный слой в каком-либо месте переходит в турбулентный, то интегрирование в формуле (7.20) следует выполнить до точки перехода. Позади этого места сопротивление трения подсчитывается иначе, а именно в соответствии с законами турбулентного течения, о чем будет сказано подробно ниже, в главе XXII.  [c.132]

Отрыв пограничного слоя вносит качественное изменение в обтекание тела потоком жидкости, которое не ограничивается лишь появлением лобового сопротивления, а сопровождается образованием вихрей, срывающихся с цилиндра и уносящи.хся потоком жидкости. Они рассеиваются далеко позади цилиндра. Явление вихреобразования происходит так по любой нормали к поверхности цилиндра скорость жидкости постепенно возрастает от нулевой, которую имеет слой, непосредственно прилегающий к стенке, до скорости потока за пределами пограничного слоя, толщина которого мала. На рис. 3.2, а показано распределение скоростей при ламинарном течении в пограничном слое, а на рис. 3.2,6—при турбулентном течении, которое характеризуется более быстрым нарастанием скоростей у пластинки.  [c.47]

Таким образом, все параметры потока, в том числе полное сопротивление трения и полный коэффициент сопротивления трения, могут быть определены. Так как при безотрывном обтекании сопротивление будет определяться почти полностью трением, то, очевидно, в этом случае для уменьшения сопротивления необходимо увеличивать участок ламинарного пограничного слоя. Иначе обстоит дело с плохо обтекаемыми телами. Из кривых рис. XIII.6 видно, что отрыв турбулентного слоя происходит в точках ( = 0) при значении формпарметра Д = —(3 -ь 6). Опыты с обычными авиационными профилями дают = —2, так что общий интервал значений в турбулентном слое находится в пределах = —(2н-6).  [c.339]

I При числах Маха набегающего потока, больших критического Мкр> около обтекаемого тела развивается местная зона сверхзвуковых скоростей, которая обычно заканчивается скачком уплотнения. Скачок уплотнения, взаимодействуя с вязким пограничным слоем, во многих случаях вызывает отрыв потока от поверхности тела. Таким образом, при М > Мкр получаются дополнительные потери полного давления как в скачке уплотнения, так и в вызванной им аоне отрыва. Эти потери полного давления связаны с приростом сопротивления тела, который может быть весьма значительным. Попытка оценить порядок части сопротивления плоского профиля, связанной с потерями полного давления в скачке уплотнения при М > Мкр> была сделана Я. М. Серебрийским и С. А. Христиановичем (1944), получившими некоторую гипотетическую оценку роста волнового сопротивления. Была рассмотрена потеря количества движения в струйке газа, проходящей через прямой скачок уплотнения, при условии, что давление за скачком должно восстанавливаться до давления в набегающем потоке. Полученное выражение для волновых потерь в струйке было разложено в ряд по степеням (Мх — 1), где Мх — число Маха перед скачком. В связи с тем, что указанное разложение начинается с члена, пропорционального (М1— 1) , Я. М. Серебрийским и С. А. Хри-  [c.100]

Как показывают расчеты, выполненные в 6 главы X, ламинарный пограничный слой в состоянии преодолеть без отрыва только очень небольшое возрастание давления вдоль контура тела. При турбулентном течении опасность отрыва сама по себе значительно меньше, чем при ламинарном течении, так как турбулентное течение обеспечивает непрерывный перенос импульса из внешнего течения в пограничный слой. Тем не менее и при турбулентном течении всегда желательно так управлять пограничным слоем, чтобы предупредить отрыв. Особый толчок проблема управления пограничным слоем получила в последнее время со стороны авиационной техники, для которой предуцреждение отрыва представляет особый интерес, поскольку отрыв уменьшает подъемную силу крыла и вместе с тем увеличивает его лобовое сопротивление [ ],  [c.352]

Отсасывание пограничного слоя. Принцип действия отсасывания (рис. 14.3, в) состоит в удалении из пограничного слоя частиц жидкости, заторможенных в области возрастания давления, прежде чем они успевают вызвать отрыв течения от стенки. Позади щели, через которую производится отсасывание, образуется новый пограничный слой, опять обладающий способностью к преодолению определенного возрастания давления и при надлежащем устройстве щели иногда доходящий без отрыва до задней кромки тела. Благодаря отсасыванию сильно уменьшается сопротивление давления-Этот способ управления пограничным слоем, испробованный Л. Прандтлем уже в 1904 г. (см. рис. 14.1), впоследст-  [c.355]

Изложенный в предыдущем параграфе простой эмпирический прием, оказавшийся пригодным для расчета сопротивления трения в турбулентном пограничном слое на пластине с характерными для нее гладкими профилями скоростей в сечениях слоя, станет недостаточным при появлении нового фактора — обратного перепада давления. При одном взгляде на семейство кривых, показанное на рис. 260, можно сразу заметить характерное для диффузорного участка пограничного слоя возникновение на профилях скорости перегибов, все более и более ярко выраженных при приближении к точке отрыва. Отрыв турбулентного пограничного слоя располагается гораздо ииже по потоку от начала диффузорной области — точки минимума давления, — чем отрыв ламинарного пограничного слоя. Физически это объясняется тем, что турбулентное трение между отдельными и-сидкими слоями внутри пограничного слоя значительно интенсивнее, чем трение в ламинарном пограничном слое при прочих равных условиях это усиливает увлечетю внешним потоком пристеночной жидкости и приводит к затягиванию отрыва. Аналогичным объяснением служит большая заполненность турбулентных профилей скорости по сравнению с урезанными ламинарными профилями, что имеет следствием перераспределение кинетической энергии в сторону ее увеличения в пристеночных слоях и является причиной затягивания отрыва. Ламинарный пограничный слой, как правило, отрывается в небольшом по сравнению с турбулентным слоем удалении от точки минимума давления. Большая продольная протяженность диффузионной области турбулентного пограничного слоя и сравнительно с ламинарным слоем значительное удаление точки отрыва от точки минимума давления служит одной из причин трудности теоретического предсказания расположения точки отрыва иа поверхности тела.  [c.764]


Хочется отметить, что основное предположение об эквивалентности сопротивления активно плавающего тела сопротивлению модели, вообще говоря, может быть неверным. Это связано с тем, что поле давления вокруг плывущей рыбы должно значительно отличаться от распределения давления около жесткой модели, и такое различие фундаментальным образом изменит расчет пограничного слоя. При подходящей частоте и фазе волнообразное движение может задер-живать как переход к турбулентности, так и отрыв.  [c.108]


Смотреть страницы где упоминается термин Отрыв пограничного слоя, сопротивление тел : [c.16]    [c.331]    [c.90]    [c.339]    [c.194]    [c.297]    [c.231]   
Смотреть главы в:

Гидроаэромеханика: Учебник для вузов.  -> Отрыв пограничного слоя, сопротивление тел



ПОИСК



355, 357 — Слой — Сопротивление

Данные о турбулентном Обтекании отрыв пограничного слоя, кризис сопротивления и механизм туроулизацин пограничного слоя

Отрыв

Отрыв в пограничном слое (см. Пограничный слой, отрыв)

Отрыв пограничного слоя

Отрыв пограничного слоя, кризис сопротивления и механизм турбулизации пограничного слоя

Сопротивление отрыву



© 2025 Mash-xxl.info Реклама на сайте