Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод непосредственного интегрирования дифференциального уравнения

Определение перемещений методом непосредственного интегрирования дифференциального уравнения упругой линии в случае балок с большим количеством участков сопряжено со значительными трудностями. Эти затруднения заключаются не в интегрировании дифференциальных уравнений, а в технике определения произвольных постоянных интегрирования — составлении и решении систем линейных алгебраических уравнений. Так, если балка по условиям нагружения разбивается на п участков, то интегрирование дифференциальных уравнений для всех участков балки дает 2п произвольных постоянных. Добавив к двум основным оперным условиям балки 2 п — 1) условий непрерывного и плавного сопряжения всех участков упругой линии, можно составить 2п уравнений для определения этих постоянных.  [c.281]


МЕТОД НЕПОСРЕДСТВЕННОГО ИНТЕГРИРОВАНИЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ  [c.193]

Определение перемещений методом непосредственного интегрирования дифференциального уравнения упругой  [c.6]

Для определения перемещений в ступенчатом стержне можно пользоваться методом непосредственного интегрирования дифференциального уравнения упругой линии балки или энергетическими методами, которые будут рассмотрены ниже, или применять видоизмененный метод начальных параметров. Суть последнего заключается в замене ступенчатого стержня эквивалентным ему по деформациям стержнем постоянной жесткости.  [c.152]

На основании выполненных примеров можно установить следующий ПОРЯДОК определения перемещений (при изгибе балок) методом непосредственного интегрирования дифференциального уравнения Упругой линии.  [c.333]

При решении динамических задач будем применять метод непосредственного интегрирования дифференциального уравнения движения.  [c.328]

Рассмотренный метод непосредственного интегрирования дифференциального уравнения изогнутой оси балки сильно усложняется при увеличении числа участков, так как при этом быстро растет число произвольных постоянных интегрирования. Для примера возьмем балку, загруженную двумя сосредоточенными силами (рис. 10.10).  [c.275]

Отметим, что метод непосредственного интегрирования дифференциального уравнения изогнутой оси балки 4-го порядка целесообразно использовать  [c.286]

Решение сформулированной таким образом задачи не является простым, поскольку нелинейные члены в левой части уравнений энергии и движения сохранились. Кроме того, использовавшееся выше понятие толщины пограничного слоя математически некорректно в действительности скорость Шх и температура асимптотически приближаются к значениям Wo и при у- оо. Непосредственное интегрирование дифференциальных уравнений пограничного слоя для области с бесконечно удаленной границей (у- со) связано со сложными математическими операциями и здесь рассматриваться не будет воспользуемся для этого приближенным методом, основанным на использовании интегральных соотношений для переноса количества движения (импульса) и теплоты в пограничном слое.  [c.347]

Аналитические решения, полученные путем непосредственного интегрирования дифференциальных уравнений, дают возможность вычислить температуру в любой точке данной системы. В противоположность этому в основу численного метода положено уравнение в форме конечных разностей, с помощью которого вычисляем температуру в некоторых, заранее выбранных точках данной системы. Это равноценно математическим приемам приближенного интегрирования. Следует отметить, что если получение точного аналитического решения связано с трудностью удовлетворения граничных условий, которые не всегда осуществимы, то при помощи численного метода всегда возможно, по крайней мере приближенно, удовлетворить граничным условиям конкретной задачи.  [c.107]


Основным методом точного определения критического значения нагрузки является непосредственное интегрирование дифференциального уравнения криволинейной формы равновесия. При использовании этого метода вычисление критической силы сводится к решению путем подбора достаточЕЮ сложных трансцендентных уравнений. Поэтому при практическом осуществлении расчетов на устойчивость большое значение приобретают таблицы первых корней этих уравнений, т. е. заранее вычисленные значения критических сил.  [c.324]

Если известно дифференциальное уравнение (передаточная функция) системы, реакция АСР па заданное возмущающее воздействие может быть найдена непосредственным интегрированием дифференциального уравнения (при его невысоком порядке [41]), численными методами решения дифференциальных уравнений на ЭВМ [29, 30], методами структурного моделирования или решения на АВМ [48].  [c.456]

Расчет переходного процесса в системе является заключительным этапом синтеза оптимальной АСР. Целесообразный метод нахождения переходного процесса зависит от особенностей системы, формы представления исходных данных и располагаемых вычислительных возможностей. Если известно дифференциальное уравнение (передаточная функция) системы, реакция АСР на заданное возмущающее воздействие может быть найдена путем непосредственного интегрирования дифференциального уравнения (при его невысоком порядке), численными методами решения дифференциальных уравнений на ЭВМ, частотными методами [27, 35]. В последнем случае реакция системы на единичное ступенчатое воздействие х () = 1(/) (переходная характеристика АСР) рассчитывается по соотношению, следующему из формулы обратного преобразования Фурье  [c.539]

Метод вычисления перемещений балки, основанный на непосредственном интегрировании дифференциального уравнения (130), называется аналитическим методом..  [c.180]

Аналитические решения, полученные путем непосредственного интегрирования дифференциальных уравнений, дают возможность вычислить температуру в любой точке данной системы. В противоположность этому в основу численного метода положено уравнение в форме конечных разностей, с помощью которого вычисляем температуру в некото-  [c.107]

Этот метод является аналитическим и основан на непосредственном интегрировании дифференциального уравнения (10.6) изогнутой оси балки  [c.270]

Существует несколько различных эквивалентных формулировок теории возмущений. В рамках канонического формализма явные выражения для гейзенберговских операторов определяются известной формулой Швингера (2.44). В ряде случаев более удобным оказывается метод Янга — Фельдмана, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих соответствующую квантовую систему, путем переформулировки их в интегральном виде с автоматическим учетом граничных условий и последующего разложения искомых решений в ряд по степеням Я.  [c.230]

Рассмотрим несколько примеров определения деформаций балок методом непосредственного интегрирования основного дифференциального уравнения (10.44), а затем установим правила построения эпюр углов поворота и прогибов, которые необходимы при исследовании деформированного состояния балок при сложной системе нагрузок.  [c.273]

В этой главе рассматриваются некоторые методы интегрирования уравнений динамики. В настоящее время теория интегрирования дифференциальных уравнений является одним из основных разделов математического анализа и подлежит отдельному изучению. Поэтому здесь идет речь лишь о некоторых вопросах из этой области, непосредственно связанных с основами аналитической механики.  [c.348]

Метод непосредственного интегрирования, рассмотренный ранее, удобен при определении углов поворота 0 и прогибов f сечений балки, когда число участков балки незначительно (один—два). При интегрировании приближенного дифференциального уравнения изогнутой оси балки каждый участок дает две постоянных интегрирования С и О, т. е. при числе участков балки пт имеем 2т постоянных интегрирования.  [c.195]


Как уже известно, при определении перемещений методом непосредственного интегрирования необходимо для каждого участка балки составлять выражения изгибающих моментов и производить интегрирование основного дифференциального уравнения изогнутой оси балки. Поэтому при двух или большем числе участков балки применение изложенного метода становится затруднительным.  [c.294]

В каком порядке производится определение углов поворота и прогибов сечений балки методом непосредственного интегрирования основного дифференциального уравнения упругой линии  [c.399]

Для нахождения уравнения изогнутой оси балки, как и в предыдущем случае, можно применить метод непосредственного интегрирования. Проинтегрируем последовательно дифференциальное  [c.281]

Численные методы непосредственного интегрирования системы почти линейных дифференциальных уравнений типа  [c.68]

Вариационные принципы встречаются во многих физических и других задачах, и методы приближенного решения таких задач часто основаны на соответствующих вариационных принципах. Математически вариационный принцип состоит в том, что интеграл от некоторой функции имеет меньшее (или большее) значение для реального состояния системы, чем для любого возможного состояния, допускаемого основными условиями системы. Подынтегральная функция зависит от координат, амплитуд поля и их производных, а интегрирование осуществляется по области, покрываемой координатами системы, среди которых, возможно, есть и время. Задача определения минимума интеграла часто сводится к решению одного или нескольких дифференциальных уравнений с частными производными при соответствующих граничных условиях. Цель нашей книги не в том, чтобы рассматривать приближенные методы решения этих дифференциальных уравнений как способ решения исходных физических задач, сформулированных в виде вариационных принципов. Вместо этого мы намерены описать приближенные методы, которые основаны непосредственно на вариационных принципах.  [c.32]

Пользуясь указанными дифференциальными уравнениями, непосредственным их интегрированием или по методу начальных параметров можно получить перемещения. Кроме того, перемещения могут быть определены энергетическими методами, которые рассмотрим ниже.  [c.336]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

При исследовании нелине 1ных колебаний в системах с одной степенью свободы графоаналитические методы применяют как для общих качественных исследований конкретных систем (путем построения соответствующих фазовых диаграмм, см, п. 2 гл. I), так и для непосредственного интегрирования дифференциальных уравнений второго порядка, описывающих нелинейные колебания. Графоаналитические методы могут быть эс[)фективными в случаях, когда не требуется высокой точности решений дифференциальных уравнений низкого порядка. Точность этих методов зависит от способа построения графиков решений н обычно возрастает при увеличении нх масштаба.  [c.47]

В практике часто встречаются случаи, когда объектом расчета является сложное сочетание различных тел, например бетонное перекрытие с замурованными железными балками, изолированные трубопроводы с открытыми фланцами, барабаны паровых котлов и др. Расчет теплопроводности таких сложных объектов обычно производят раздельно по элементам, мысленно разрезая их плоскостями параллельно и перпендикулярно направлению теплового потока. Однако вследствие различия термических сопротивлений отдельных элементов, а также вследствие различия их формы в местах соединения элементов распределение температур может иметь очень сложный характер, и направление теплового потока может оказаться неожиданным. Поэтому указанный способ расчета объектов имеет лишь приближенный характер. Более точно расчеты сложных объектов можно провести лишь в том случае, если известно распределение изотерм и линий тока, которое можно определить опытным путем при помощи методов гидро- или электроаналогии. В ряде случаев достаточно точный расчет можно получить путем последовательного интегрирования дифференциального уравнения теплопроводности (см, 2-2 и 7-1) для различных элементов сложной конструкции. Однако для таких расчетов необходимо привлекать современную вычислительную технику и машинный счет. Наиболее надежные данные по теплопроводности сложных объектов можно получить только путем непосредственного опыта, который проводится или на самом объекте или на его уменьшенной модели.  [c.25]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]


Эта связь между дифференциальными уравнениями динамики и дифференциальными уравнениями в частных производных относится к общей теории дифференциальных уравнений в частных производных первого порядка, где она и была открыта Коши в 1819 г. задолго до Якоби. После того как Якоби самостоятельно подметил и изучил эту связь, он получил общую теорию интегрирования дифференциальных уравнений динамики. Метод состоит в том, что вместо непосредственного исследования основных уравнений динамики ищут достаточно общее решение гамильтоновых уравнений в частных производных, из которого интегрирование первых получается, так сказать, само сабой.  [c.826]

В теории ребристых оболочек широко применяется также метод непосредственного интегрирования уравнений ребристой оболочки обычно с помощью двой- " ных и одинарнйх тригонометрических рядов. Так как коэффициенты уравнений в местах присоединения ребер терпят разрыв, переменные не разделяются. Использование двойных рядов приводит к бесконечной системе алгебраических урав- яений, а одинарных в направлении, нормальном к осям ребер, к бесконечной системе обыкновенных дифференциальных уравнений. При использовании разложения в окружном направлении для оболочек со шпангоутами или в продольном направлении для оболочек со стрингерами переменные разделяются, поэтому здесь дело обстоит проще. Получается система обыкновенных дифференциаль- ных уравнений восьмого порядка со слагаемыми в виде дельта-функций. Перенося эти слагаемые в правую часть, можно представить частное решение с помо- -щью формулы Кошн в виде интегралов с переменным верхним пределом. Процесс дальнейшего решения становится рекуррентным и сводится к последова- I тельному решению систем восьми алгебраических уравнений. Число таких решений равно числу ребер плюс одно решение. Указанный метод использовал Н. И. Карпов [40] при расчете круговой цилиндрической оболочки с продольны- ми ребрами, а также П. А. Жилии [24] при анализе осесимметричной задачи для круговой цилиндрической оболочки со шпангоутами. При использовании формулы Коши необходимо знать систему нормальных фундаментальных функций (ядро Коши). Метод определения ядра Коши для линейных дифференциальных уравнений е переменными коэффйциеитами развит в книге И. А. Биргера [4]. Он осно- г -ван на решении так называемых нормальных интегральных уравнений (аналоги уравнений Вольтерра). В указанной книге дан также ряд приложений теории нормальных интегральных уравнений.  [c.324]

Однако для нахождения этих величин, например спектрального состава, теория колебаний часто должна в качестве промежуточной ступени определять численные значения функций для тех или иных частных значений независимого переменного. Обычные приближенные методы количественного интегрирования (например, метод изоклин, метод Рунге — Кутта), которые могут быть использованы для получения ответов на такие вопросы, само собой разз меется, также оперируют непосредственно с дифференциальным уравнением. Знание качественной картины для данного дифференциального уравнения позволяет с большей эффективностью и надежностью применять количественные приближенные методы, разумно их комбинировать и т. д.  [c.34]


Смотреть страницы где упоминается термин Метод непосредственного интегрирования дифференциального уравнения : [c.27]    [c.20]    [c.259]    [c.286]    [c.290]    [c.386]    [c.79]    [c.90]    [c.251]    [c.115]   
Смотреть главы в:

Сопротивление материалов  -> Метод непосредственного интегрирования дифференциального уравнения



ПОИСК



Интегрирование

Интегрирование дифференциальных

Интегрирование дифференциальных уравнений

Интегрирование уравнений

Метод дифференциальный

Метод непосредственного интегрировани

Методы Уравнения дифференциальные

Методы интегрирования

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте