Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема о движении центра инерции системы материальных точек

Теорема о движении центра инерции системы материальных точек  [c.142]

Теорема о движении центра инерции системы материальных точек. Центр инерции системы материальных точек движется как материальная точка, масса которой равна массе материальной системы и к которой приложены все внешние силы, действующие на систему  [c.146]

Задачи динамики поступательного движения твердого тела решаются посредством теоремы о движении центра инерции системы материальных точек. Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра тяжести твердого тела. При поступательном же движении твердого тела траектории всех точек одинаковы, а скорости и ускорения их соответственно равны.  [c.147]


Задачи с помощью теоремы о движении центра инерции системы материальных точек рекомендуется решать в следующей последовательности  [c.147]

Теорема о движении центра инерции системы материальных точек в проекции на ось х имеет вид  [c.157]

Задачи 269 и 270 были решены двумя способами применением теоремы о движении центра инерции системы материальных точек и с помощью уравнения динамики переносного поступательного движения. Степень трудности решения задач этими способами следует считать примерно равноценной.  [c.165]

Если бы человек, стоящий на гладкой горизонтальной плоскости, хотел подпрыгнуть, то он мог бы это совершить. Действительно, теорема о движении центра инерции системы материальных точек в проекции на ось у дает  [c.166]

Из сопоставления этого дифференциального уравнения с теоремой о движении центра инерции системы материальных точек  [c.208]

Первые два уравнения (теорема о движении центра инерции системы материальных точек, записанная в проекциях на оси декартовых координат лг и у) описывают переносное поступательное движение вместе с поступательно движущимися осями координат, начало которых расположено в центре инерции С твердого тела.  [c.252]

Поступательное движение твердого тела. Наиболее общим приемом составления уравнений динамики поступательного движения твердого тела является применение теоремы о движении центра инерции системы материальных точек. Теорема преимущественно используется в проекциях на оси декартовых координат. В число данных и искомых величин должны входить массы материальных точек, их уравнения движения, внешние силы системы. Решение обратных задач упрощается в случаях, когда главный вектор внешних сил, приложенных к твердому телу, постоянен либо зависит только от 1) времени, 2) положений точек системы, 3) скоростей точек системы. Труднее решать обратные задачи, в которых главный вектор внешних сил одновременно зависит от времени, положения и скоростей точек системы.  [c.540]

Влияние гироскопических сил на свободные колебания твердого тела с четырьмя степенями свободы. Для составления дифференциальных уравнений малых колебаний твердого тела при наличии гироскопических сил следует применять теорему о движении центра инерции системы материальных точек вместе с теоремой об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции.  [c.624]


В связи с последним замечанием особый интерес представляет центральная система, которая движется поступательно относительно инерциальной так, что в любой момент t скорость (ускорение) всех ее точек совпадает со скоростью (ускорением) центра инерции рассматриваемой системы материальных точек. В центральной системе кориолисовых сил инерции нет (так как переносное движение поступательно и о> = 0), и для связанного с ней наблюдателя центр инерции рассматриваемой системы материальных точек неподвижен ( с = Wq = 0). Поэтому для такого наблюдателя из формулы Q = Mv следует, что в центральной системе Q = 0 всегда (т. е. не только для замкнутых систем, но и при любых внешних силах ) количество движения системы сохраняется равным нулю во время движения. Из теоремы о движении центра инерции  [c.106]

Следует обратить внимание на го, что, подобно теоремам о движении центра инерции, об изменении главного вектора количеств движения системы материальных точек, в формулировку данной теоремы также не входят внутренние силы системы, определение которых обычно связано со значительными трудностями.)  [c.193]

Настоящая глава динамики системы является непосредственным развитием содержания гл. III ч. IV первого тома. Из четырех основных теорем динамики системы три были рассмотрены раньше для частного случая одной материальной точки. Четвертая теорема — теорема о движении центра инерции — по своему содержанию может быть рассмотрена только в динамике системы.  [c.40]

Если одна из проекций главного вектора внешних сил является функцией только времени, то из соответствующего уравнения системы (1.47) можно найти первый интеграл дифференциальных уравнений движения материальной системы. Конечно, этот интеграл можно получить и на основании теоремы о движении центра инерции.  [c.52]

Теорема о движении центра инерции. — Центр инерции материальной системы движется как свободная точка, масса которой равна массе всей системы и которая находится под действием всех внешних сил, перенесенных параллельно им самим в эту точку.  [c.8]

Это равенство означает, что центр масс системы движется так же, как двигалась бы материальная точка, масса которой равнялась бы массе системы, под действием силы, равной главному вектору всех внешних сил системы. Это утверждение называют теоремой о движении центра масс (центра инерции).  [c.157]

Теорема о движении центра масс (также центра инерции, центра тяжести). Центр масс системы движется, как материальная точка, в которой сосредоточена ася масса системы и к которой приложены все внешние силы, действующие на систему.  [c.389]

Как можно заметить из формулы (1.44), теорема об изменении количества движения системы является следствием из теоремы о движении ее центра инерции так же, как теорема об изменении количества движения материальной точки эквивалентна второму закону Ньютона.  [c.51]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]


Изменению подвергся в основном первый раздел— Статика . Значительно расширены 2 Аксиомы статики и 3 Связи и реакции связей , заново написан 4 Определение равнодействующей двух сил, приложенных к точке . Переработаны 22 Приведение плоской системы сил к данному центру , а также глава VIII Центр тяжести . Глава Графостатика и параграф Определение усилий в стержнях ферм методом моментных точек из учебника исключены. Из раздела Динамика исключены два параграфа Дифференциальные уравнения точки и Движение материальной точки, брошенной под углом к горизонту , а также доказательство теоремы о движении центра инерции.  [c.3]

ТЕОРЕМА [взаимности (перемещений перемещение точки А под действием силы, приложенной в точке В, равно перемещению точки В под действием силы, приложенной в точке А работ работа первой силы на перемещении точки ее приложения под действием второй силы равна работе второй силы на перемещение точки ее приложения под действием первой силы ) Гульдена — Панна ( площадь поверхности, полученной вращением дуги плоской кривой (или ломаной линии) вокруг оси, лежащей в ее плоскости, но ее не пересекающей, равна длине этой дуги, умноженной на длину окружности, описанной центром тяжести объем тела вращения, образованного вращением плоской фигуры вокруг оси, лежащей в плоскости этой фигуры и ее не пересекающей, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести площади фигуры ) Гюйгенса точка подвеса физического маятника и центр качания суть точки взаимные Гюйгенса — Штейнера момент инерции тела относительно некоторой оси равен сумме момента инерции тела относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между ними о движении центра масс ( центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внещние силы, действующие на систему тела с переменной массой центр масс тела с переменной масой движется как точка затвердевшей массы, в которой сосредоточена масса тела в данный момент и к которой приложены главный вектор активных внешних сил и главный вектор реактивных сил ) Жуковского если силу, приложенную к какой-либо точке звена плоского механизма, перенести параллельно самой себе в одноименную точку повернутого плана скоростей, то момент этой силы относительно полюса плана скоростей будет пропорционален ее мощности ]  [c.282]

Согласно определению математического ротора усилие Р является приведенной силой физического ротора согласно уравнению (64). Точкой приведения силы Р является точка Шток 5 имеет массу Шц,, которая также является приведенной для данного физического ротора. Вал ротора служит звеном приведения момента сил М . В плоскости перемещения грузов имеются две системы координат с началами в точках О и От. Точка О может быть выбрана произвольно на оси вращения (оси Оу), точка 0 является точкой приведения силы Р, лежит на оси Оу и является одновременно вершиной профиля 3. Согласно схеме рис. 42 на рис. 43 ордината точки приведения силы Р в системе хОу обозначена Ь и изменяется от до Следовательно, координаты точки Ох в начальном положении в координатной системе хОу (О Ьх) оси х обеих систем параллельны. Обе системы вращаются вместе с ротором. Ротор имеет приведенный момент инерции, определяемый форл улой (62). Под моментом инерции У понимается некоторая постоянная величина, равная моменту инерции покоя изучаемого физического ротора. МомеНт инерции Д/ из формулы (62) может быть найден из анализа рис. 43. Любой элементарный механизм ротора имеет общий центр масс активных подвижных звеньев, перемещение которого, а также перемещение активных подвижных звеньев относительно этого центра определяет величину ДУ. В математическом роторе (см. рис. 43) активные звенья каждого элементарного механизма заменены одним центробежным грузом 1 (следовательно, число грузов в математическом роторе равно числу элементарных механизмов в роторе данного физического толкателя). Для такой замены необходимо, чтобы кинетическая энергия груза 1 в каждый момент времени равнялась кинетической энергии этих звеньев. Согласно теореме Кенига кинетическая энергия последних равна кинетической энергии массы, сосредоточенной в центре масс элементарного механизма, и сумме кинетических энергий всех материальных точек активных подвижных звеньев в движении относительно центра масс. Кинетическая энергия каждого центробежного груза (см. рис. 43) в его движении относительно корпуса 7  [c.119]


Смотреть главы в:

Теоретическая механика в примерах и задачах. Т.2  -> Теорема о движении центра инерции системы материальных точек

Теоретическая механика в примерах и задачах. Т.2  -> Теорема о движении центра инерции системы материальных точек



ПОИСК



Движение материальной точки

Движение по инерции

Движение системы

Инерция системы

Материальная

СИСТЕМА инерции материальной точки

Система материальная

Система материальных точек

Система точек

Система центра инерции

Теорема движения

Теорема о движении центра инерции

Теорема о движении центра мас

Теорема об изменении главного момента количеств движения системы материальных точек в относительном движении ио отношению к центру инерции

Теорема системы

Точка инерции

Точка материальная

Точка материальная центра

Точка центра

Точка — Движение

Центр инерции

Центр инерции материальной системы

Центр инерции системы материальных точек

Центр системы



© 2025 Mash-xxl.info Реклама на сайте