Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Столкновение частиц с поверхностью

Столкновение частиц с поверхностью  [c.209]

Теоретические закономерности флотационного процесса и эффективность извлечения примесей из жидкости. Контактирование пузырьков воздуха и частиц примесей возможно двумя путями при столкновении частиц с поверхностью пузырьков при их образовании на частицах при выделении растворенных газов. Для напорной флотации при очистке природных вод процесс взаимодействия пузырьков при их столкновении с частицами примесей является основным и поэтому представляет практический и теоретический интерес. Прикрепление пузырьков к частице характеризуется краевым углом смачивания е, образуемым поверхностью частицы и касательной к поверхности пузырька, величина которого определяется размерами частицы и пузырька, а также поверхностным натяжением на границе раздела трех фаз твердого тела частицы), жидкости и воздуха. Для системы, находящейся в равновесии, должны выполняться условия  [c.219]


Это позволяет пренебречь заполнением области разрежения за счет столкновений частиц с поверхностью тела. Более того, можно  [c.95]

Процессы получения КЭП обычно принято проводить при перемешивании или циркуляции суспензии, обусловливающих большое число столкновений частиц с поверхностью. Возможно проведение электролиза и без перемешивания или с предварительным взмучиванием (в случае быстро оседаемых частиц). Во многих случаях интенсивное перемешивание может привести и к обратному результату — адгезия частиц затрудняется.  [c.103]

V в направлении оси Ох. Обозначим через S энергию этой частицы, через т массу электрона, через NZ число электронов в 1 Л4 , через Z порядковый номер элемента, через Ь минимальное расстояние электрона от траектории пролетающей частицы, называемое прицельным параметром. Опишем круговой цилиндр радиусом, равным прицельному расстоянию Ь, с осью, совпадающей с траекторией частицы, таким образом, чтобы боковая поверхность цилиндра проходила через точку, в которой находится электрон (рис. 1). Будем принимать, что взаимодействие-столкновение частицы с атомным электроном не оказывает существенного влияния на траекторию пролетающей частицы, а координаты, электрона заметно не изменяются за время взаимодействия-столкновения, т. е. если Л  [c.18]

Для термометрии поверхности метод КР привлекателен еще тем, что с его помощью можно регистрировать и изучать неравновесные состояния фононной подсистемы. Такие неравновесные состояния, характеризуемые высокой эффективной температурой отдельных подсистем, могут оказывать влияние на скорость поверхностных процессов (диффузию, химические реакции и т.д.). Например, при ионной или электронной бомбардировке поверхности возможна генерация неравновесных фононов. При этом интенсивность антистоксовой линии КР может существенно увеличиться, что проявится в аномально низком отношении /д//а8 для данной температуры. Проблема регистрации таких состояний заключается в том, что при столкновении одной частицы с поверхностью неравновесность локализована в очень малых пространственно-временных интервалах (на длинах порядка 10 см и временах 10 с), и при усреднении по площади зондирующего пучка и по времени зондирования регистрируемый эффект может быть чрезвычайно мал.  [c.187]

При неупругом столкновении частиц с элементом поверхности на единицу площади действует нормальная сила (давление), равная  [c.414]


У.5.1.2°). При столкновении фотона с поверхностью тела этот импульс передается атомам или молекулам вещества. Аналогично этому, давление газа есть результат передачи импульса молекулами газа частицам на поверхности стенки сосуда.  [c.415]

Аналогичное выражение, но включающее силу Магнуса из-за вращения частиц, получается из уравнений (4.3.38) для дисперсной смеси со столкновениями частиц. Видно, что составляющая Pi a связана с действием среднего давления из-за расширения трубки тока первой фазы и вид ее не зависит от структуры смеси (см. (2.3.10) и (2.3.11)), Ffi = — ЛгТ связана с вязкими силами на межфазной поверхности, а F = — связана с мелко-  [c.231]

Обзор работ по столкновению частиц и столкновению струй дан в работе [623]. Более подробный обзор литературы по инерционному осаждению и фильтрации выполнен в работе [243]. В связи с требованиями противообледенительной системы изучалось образование переохлажденных облаков на поверхности крыла самолета [82]. Процесс осаждения водяных капель при обтекании сверхзвуковым потоком двумерного клина, включая прохождение частиц через ударную волну, исследован в работах [696, 827]. Численный расчет процесса накопления водяных капель на поверхности лопаток компрессоров газовых турбин выполнен в работе  [c.211]

Этот закон совпадает с законом отражения для волн любой природы и может быть получен как следствие принципа Гюйгенса. Может показаться, что закон отражения может быть успешно объяснен и корпускулярной теорией света. Действительно, при ударе о пол упругого мяча угол отражения также равен углу падения, поэтому свет можно представить себе как поток частиц, испытывающих упругие столкновения с поверхностью раздела двух сред. Но эта гипотеза не может объяснить, почему свет  [c.264]

Рис-60. Виды различных фрактальных поверхностей, возникающих при описании перколяционных кластеров 1 - внешний периметр, или кожура (размерность Ой) 2 - неэкранированный пери.метр (показан штриховой линией) с размерностью Ои - области, где велика вероятность столкновения блуждающей частицы с границей кластера 3 - внутренний периметр. Поскольку размерность полного периметра кластера А> Дь, внутренний периметр имеет ту же размерность, что и полный периметр, 4 - узлы роста, они образуют "живую" границу кластера, фрактальная размерность их множества Конкретный вид фрактала, образованного этими узлами, зависит от механизма роста  [c.85]

В однородном поле пробой наступает практически мгновенно по достижении определенного напряжения Unp. Между электродами возникает искра, которая при достаточной мощности источника напряжения может перейти в электрическую дугу. Для газов установлен закон Пашена при неизменной температуре пробивное напряжение газа зависит от произведения его давления р на расстояние d между электродами Un-p = f(pd). На рис. 23.1 эта зависимость представлена для воздуха и водорода. Для каждого газа характерно существование минимального значения пробивного напряжения при определенном значении pd (для воздуха 327 В при pd = 665 Па-мм). Минимальное пробивное напряжение некоторых других газов. В аргон 195 водород 280 углекислый газ 420. Если иметь в виду пробой на переменном напряжении, то приведенные данные относятся к амплитудным значениям. Как видно из рис. 23.1, при давлении, близком к нормальному (0,1 МПа), и реальных межэлектродных расстояниях произведение pd таково, что рабочая точка для воздуха находится на правой ветви кривой Пашена. Поэтому с увеличением р или d t/np растет, а при уменьшении их — снижается. Левая ветвь соответствует разреженным газам, так как меж-электродные расстояния порядка 0,001 мм при атмосферном давлении на практике не применяются. Для повышения Unp газовых промежутков используют как повышение давления (обычно до 1,5 МПа), так и глубокое разрежение газа (вакуум). При значительном снижении давления газа (левая ветвь кривой Пашена) Unp растет из-за затруднения образования газового разряда вследствие малой вероятности столкновения заряженных частиц с молекулами. Но рост не беспределен при давлениях порядка 10 —10- Па (10- —10— мм рт. ст.) газовый разряд переходит в вакуумный. Вакуумный же пробой обусловлен процессами на электродах, и поэтому Unp в вакууме зависит от материала и состояния поверхности электродов [13, 14].  [c.545]


Установлено, что в определенных условиях при фильтровании через пористую среду воды, содержащей мельчайшие минеральные примеси, коагуляция в зернистом слое происходит самопроизвольно. Взвешенные частицы при столкновении с поверхностью зерен фильтрующей загрузки теряют свою агрегативную устойчивость, которая препятствует их взаимному слипанию в свободном объеме воды, и прилипают к поверхности зерен загрузки фильтра.  [c.154]

Порошки сплавов, упрочняемых дисперсными оксидами (УДО), получают по отличающейся от описанных выше технологий методом механического легирования, что предполагает совершенно другой подход к способам получения гомогенных порошков. Механическое легирование представляет собой твердофазный (т.е. протекающий без плавления) процесс, в котором частицы исходных компонентов или готовой лигатуры и частицы оксидов в заданной пропорции перемешиваются в мощной шаровой мельнице. Размер частиц смеси лигатуры колеблется от 2 до 200 мкм. Частицы оксидов обычно имеют размер меньше 10 мкм [10]. Во время помола энергия мельничных шаров либо диссипирует в тепло, либо — при столкновениях шаров с частицами порошка — передается этим частицам. Взаимные столкновения частиц приводят к их слипанию, пластической деформации и растрескиванию. Так как процесс помола проводят в инертной среде, то и слипание и растрескивание частиц происходит по атомарно-чистым поверхностям. Продолжительность процесса дробления достаточно велика (до 24 ч), поэтому до того, как будет получен мелкодисперсный гомогенный порошок, каждая частица испытает большое число столкновений. Рентгенографический анализ соответствующим образом измельченного порошка свидетельствует о наличии одной кристаллической структуры с промежуточными относительно составляющих порошок элементов параметрами [11]. Введение в порошок очень мелких о  [c.227]

Перемешивание. Процеосы получения КЭП обычно принято проводить при перемешивании или циркуляции суспензии, приводящих к большему числу столкновений частиц с поверхностью и большему их внедрению в осадок (см. табл. 4). Возможно проведение электролиза и без перемешивания или с лредварительным взмучиванием в случае быстро осаждающихся частиц [1, с. 38, 39].  [c.68]

Отметим возможность многократного столкновения частицы с поверхностью поршня. Это связано с тем, что частицы отражаются от поршпя со скоростью, большей скорости В. обгоняют фронт ударной волны (УВ), тормозятся в и могут вторично столкнуться с поршнем. Используя решения (7) — (9) при =  [c.167]

Давление света. С представлением о свете как о потоке частиц связано предположение о существовании светового давления. Если частица света обладает массой т, то при столкновении ее с поверхностью твердого тела может произойти либо поглощение частрщы, либо ее отражение. В первом случае изменение импульса частицы равно Ap=mv, во втором оно в два раза больше р = 2ти. Поэтому при одинаковой плотности потока светового излучения давление света на зеркальную поверхность должно быть в два раза больше давления иа черную поверхность, поглощающую свет.  [c.303]

Такой вид трения называется избирательным переносом и используется там, где граничное трение недостаточно надежно или не обеспечивает долговечность машины [12]. Режим ИП характеризуется сложностью физико-химических процессов, что связано не только с многообразием внешних условий трения, но и с большим числом факторов, влияющих на ход этих процессов. К числу таких факторов, возбуждающих более сложные физикохимические явления на контакте при деформации и перемещении, следует отнести термодинамическую нестабильность смазки и металла давление и нагрев скорость перемещения, приводящую к столкновениям частиц на поверхностях трения каталитическое действие окисных пленок и самого металла на смазку трибоде-струкцию — разрыв молекул как гомеополярный, так и гетеро-полярный электризацию, способствующую притяжению частиц с разными зарядами и создающую двойной электрический слой образование различного рода дефектов в структуре металла де-поляризационный эффект трения в результате скольжения одной поверхности по другой, приводящий к снижению самопассивации вплоть до разрушения окисных пленок и ускорению коррозионных процессов эффект экзоэмиссии электронов, особенно при возвратно-поступательном движении.  [c.5]

Теоретически возможно зеркальное отражение частиц от поверхности твердого тела. При этом компонента скорости, перпендикулярная поверхности, после столкновения частицы с твердым телом меняет только лишь свой знак, а касательные проекции остаются неизменньпии. Таким образом,  [c.83]

В методе ДМЭ обычно используются пучки электронов с энергией , = 10—500 эВ, которым соответствуют длины волн де Бройля 0,4-0,06 нм. Глубина проникновения электронов в кристалл определяется длиной свободного пробега и зависит от механизма неупругих столкновений частиц с атомами решетки, т.е. от потерь энергии. Основным механизмом потерь при таких Е, является возбуждение электронов в заполненной зоне твердого тела. Поскольку их плотность в валентной зоне различных материалов = 2,5 см , то глубина проникновения составляет несколько периодов решетки (0,5—1 нм). При таких энергиях практически исключено какое-либо заметное дефектообразование на атомарно-чистых поверхностях.  [c.132]

Изложенный механизм справедлив для случая небольшой разности температур между пористым материалом и паровой фазой смеси. Совершенно по-другому испарение потока завершается в тех случаях, когда вследствие подвода теплоты теплопроводностью в область испарения температура пористой матрицы быстро возрастает. В этом случае в месте, где температура проницаемого каркаса достигает определенной величины Г, соответствующей предельно достижимому перегреву жид кости, теплоноситель не может больше существовать в жидкостной фазе на поверхности частиц, жидкость перестает смачивать материал и микропленка свертывается в микрокапли. В итоге происходит резкое уменьшение интенсивности теплообмена при смене режима испарения микропленки на режим конвективного теплообмена дисперсного потока перегретого пара с мельчайшими каш1ями. Здесь микрокапли при столкновении с поверхностью каркаса уже не растекаются по ней, вследствие чего испарение их затруднено.  [c.82]


Частицы примесей природной воды при столкновении друг с другом или с частицами контактной массы обычно отталкивают- а ся, так как они обладают определенной агрегативной устойчивостью. Агрегативная устойчивость большинства примесей воды (глинистые частицы, гуминовые вещества и т. п.) обусловлена электростатическими силами отталкивания, т. е. наличием электрического заряда, определяемыми присутствием вокруг частиц двойного электрического слоя, состоящего из противоположно заряженных ионов непосредственно на поверхности частиц отрицательно заряженные ионы, а вокруг атмосфера противоионов из ионов водорода, натрия или калия.  [c.219]

Для случая удара угольной пыли о металлическую поверхность рекомендуется принимать К от 0,5 до 0,85. Поэтому в расчете К варьировался в пределах 0,4—1,0 (абсолютно упругое тело). Это позволило исследовать влияние величины К на характер движения пыли после ее удара о твердую поверхность. Что касается угла отражения, то, как показано в [Л. 83], при взаимодействии частиц кварца и СаО (6=200—1000 мкм) со стеклянной и металлическими поверхностями этот угол или равен углу падения, или несколько превышает его. Исключение составляет случай столкновения частиц СаО с резиновой поверхностью, где угол отражения значительно меньше угла падения. В расчетах угол падения был принят равным углу отражения. Кроме того, приняты допущения, что столкновения между твердыми частицами при их движении в газовой фазе отсутствуют и что все частицы, достигающие внутренней поверхности корпуса, ударяются только об эту поверхность, а не о частицы, ранее вошедшие в соприкосновение с ней Как показывают расчеты, основанные на [Л. 51], столк новения между отдельными частицами даже в пристен ной области, где Хл в несколько раз превышает о, отно сительно невелики и не оказывают существенного влия ния на интегральный эффект в работе устройства Однако в [Л. 45] показано, что в одну и ту же точку внутренней поверхности циклона может одновременно ударяться несколько частиц даже при относительно невысокой пространственной концентрации их в потоке. Поскольку же, как показано в опытах с пылью железа, упругость металла, как правило, выше упругости угольной пыли, то эффект рикошетирования будет снижаться. Многочисленные эксперименты ВТИ на прозрачных моделях сепараторов показывают, что с увеличением р,о рикошет пыли в центральную часть потока уменьшается, что также подтверждает сделанный вывод. Таким образом, результаты расчета соответствуют (с точки зрения  [c.87]

ПРИСТЕНОЧНАЯ ПРОВОДИМОСТЬ — электронная проводимость разреженной замагниченной плазмы поперёк магЕ. поля, обусловленная столкиовевиямв электронов не с тяжёлыми частицами (атомами, ионами) в объёме, а столкновениями с поверхностями (стенками), пересекающими магн. силовые линии. Проводимость поперёк магн. поля возникает при наличии возмущения дрейфовой скорости частиц. П. п. может быть связана как с диффузным , так и с квазиэеркальным рассеянием электронов.  [c.118]

Высокий и сверхвысокий вакуум создаётся в электронных приборах и ускорителях, чтобы избежать нежелат. потерь при столкновениях ускоряемых частиц с частицами остаточного газа. Исследование свойств поверхностей в вакууме приобрело большое значение в связи с освоением космич. пространства, в к-ром реализуются условия глубокого вакуума.  [c.320]

РНЫЕ РЕАКЦИИ —процессы, идущие при столкновении ядер или элементарных частиц с др. ядрами, в результате к-рых изменяются квантовое состояние и нуклон-ный состав исходного ядра, а также появляются новые частицы среди продуктов реакции. Я. р. позволяют исследовать механизм взаимодействия частиц и ядер с ядрами. Это осн. метод изучения структуры ядра (см. Ядро атомное), получения новых изотопов и элементов. Для осуществления Я. р. необходимо сближение частиц (нуклона и ядра, двух ядер и т. д.) до расстояния 10"см, или до 1 ферми (радиус сильного взаимодействия), между частицей и поверхностью ядра или между поверхностями ядер. При больших расстояниях взаимодействие заряж. частиц чисто кулоновское. В Я. р. выполняются законы сохранения энергии, импульса, угл. момента, электрич, и барионного зарядов (см. Бариотое число). Я. р. обозначаются символом а (Ь, с) d, где а—исходное ядро-мишень, Ь—налетающая частица, с—новая вылетающая частица, d—результирующее ядро.  [c.667]

Отложение взвешенных веществ в порах фильтрующей основы (объемное фильтрование) происходит, если их размер меньше размера пор и траектория движения частиц приводит к их контакту с поверхностью поровых каналов. Этому способствуют диффузия за счет броуновского движения прямое столкновение инерция частиц прилипание за счет ван-дер-ваальсовых сил осаждение под действ1ием гравитационных сил вращательное дв1ижение под действием гидродинамических сил. Фиксирование частиц примесей воды на поверхности и в порах фильтрующего материала обусловлено малыми скоростями движения жидкости, силами когезии и адсорбции.  [c.147]

Слияние частиц и пузырьков газа при их столкновении определяется наличием условий, необходимых для нарушения барьерного действия гидратных слоев, находящихся между пузырьком и частицей, что требует затрат энергии. До соприкосновения гидратных оболочек, расположенных на поверхности частицы и пузырька, при приближении пузырька к твердой поверхности вода прослойки удаляется относительно легко. При контакте гидратных оболочек сопротивление воды при их удалении резко возрастает, а свободная энергия прослойки увеличивается. При достижении определенной толщины прослойка становится термодинамически неустойчивой и ее свободная энергия по мере утончения понижается. Дальнейшее слипание происходит самопроизвольно с большой скоростью. Пузырек скачком прилипает к поверхности частицы, образуя с ней определенную площадь контакта. Под пузырьком сохраняется тонкий молекулярный слой воды, который устойчиво связан с твердой поверхностью. Удаление воды с поверхности частицы приводит к значительному возрастанию свободной энергии, что связанв с затратой большого количества внешней энергии.  [c.220]

Чепмен [12] рассмотрел многочисленные аспекты теории переноса в газе, в котором имеются взвешенные частицы. В случае газов при достаточно низком давлении, или с достаточно малыми частицами, или при малых размерах сосуда длина среднего свободного пробега I может быть большой по сравнению с тем или иным микроскопическим размером d. При этих условиях безразмерное число Кнудсена Кп = Hd велико, межмолекулярпые Столкновения редки и перенос в газе будет зависеть от увеличения числа столкновений молекул с граничными поверхностями. При теоретическом анализе различают зеркальное упругое отражение, например от стенки с абсолютно гладкой жесткой или упругой поверхностью, и диффузное упругое отражение, например от стенки с негладкой упругой поверхностью. Кроме того, столкновения со стенками могут быть неупругими молекула может войти в некоторую полость поверхности и затем выйти оттуда с энергией, отличной от энергии на входе. Эта разница может иметь случайный характер, а может быть и систематической, как это имеет место в случае, когда стенка или слой, с которым взаимодействуют молекулы, горячее или холоднее газа [12]. Такие рассуждения приводят к понятию коэффициента аккомодации.  [c.68]

Нейтронное облучение. Как известно, ядерные реакции сопровождаются потоками элементарных частиц (у-кванты, р-лу-чи, потоки нейтронов и протонов и т. д.), энергия которых гораздо больше энергии связи атомов - твердого тела. Попадая в тело, они вызывают каскад других частиц и в итоге приводят к некоторым локальным нарушениям структуры тела. При достаточной интенсивности или продолжительности действия они могут привести к полной деструкции тела или к потере его работоспособности. Наибольшее влияние оказывают пучки нейтронов и Y-квантов, которые не несут электрического заряда и потому обладают наибольшим проникающим действием. Не имеющие массы Y-кванты воздействуют в основном на электронные оболочки при не слишком высоких энергиях и интенсивностях их действие сводится к нагреванию тела. Нейтроны способны искажать решетку, непосредственно воздействуя на ядро атомов. Нейтронное облучение вызывает ослабление пластических свойств тела, уменьшение вязкости разрушения /Сы и ведет к образованию дефектов, что также охрупчивает материал. Кроме того, в металлах важную роль играет тепловая диффузия протонов и нейтронов, вызывающих охрупчивание совершенно аналогично влиянию водорода (см. 1, 2 гл. VII) протоны могут попадать в тело через поверхность из внешних протонных пучков или же возникать в объеме тела при столкновении нейтронов с ядрами.  [c.512]


М — масса нуклона) и не зависит от энергии падаюш ей частицы. Если падающ,ая быстрая частица сталкивается с ядер-ной частицей вблизи поверхности ядра, то последняя может вылететь из ядра с энергией порядка 20 MeV без дальнейших столкновений. В других случаях (при столкновении не у поверхности ядра) будут происходить столкновения ядерной частицы с другими частицами, образующими ядро, в результате чего энергия, приобретённая частицей, распределится между всеми частицами ядра. Мы получим возбуждённое ядро, которое далее сможет распасться, как обычное состав-  [c.151]

Похместив пластину в плоскости г = О, мы на этой плоскости должны сформулировать граничное условие, которому должно подчиняться решение уравнения (25.4). Поскольку эффектами столкновений частиц газа с поверхностью тела мы пренебрегаем, то вне сечения тела ири z = О распределение частиц не отличается от распределения (25.2) в набегающем потоке. В то н<е время вне сечения тела число частиц с > О экспоненциально мало. Поэтому с принимаемой нами точностью будем считать такие частицы отсутствующими. Наконец, слева от тела (z = 0) с такой же точностью нет частиц, движущихся влево (v < 0), поскольку такие частицы могут возникать лишь в результате отражения от поверхности тела. Таким образом, граничное условие для нашей задачи имеет вид  [c.95]


Смотреть страницы где упоминается термин Столкновение частиц с поверхностью : [c.180]    [c.42]    [c.277]    [c.293]    [c.294]    [c.143]    [c.64]    [c.84]    [c.571]    [c.692]    [c.419]    [c.427]    [c.13]    [c.35]    [c.164]    [c.116]    [c.12]   
Смотреть главы в:

Гидродинамика многофазных систем  -> Столкновение частиц с поверхностью



ПОИСК



Множество частиц столкновение с поверхность

Столкновение частиц

Столкновения

Частицы поверхность



© 2025 Mash-xxl.info Реклама на сайте