Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение погружением

За рубежом находят применение погруженные горелки, соединенные с погруженными нагревательными поверхностями (рис. 2-16). Газ под давлением 3 000 н м поступает в камеру сгорания 1 через смеситель 2, запорный клапан 3 через трубопровод 4 от регулятора постоянного давления. На трубопроводе дополнительно установлены магнитный клапан 5 и регулятор давления  [c.60]

Применение погруженного дырчатого листа позволяет снизить влажность пара после парогенератора во всем диапазоне нагрузок и положения уровня Не,. Некоторое улучшение эффективности влагоудаления было получено также на парогенераторе с дренажными каналами в сепарационных блоках (кривая I).  [c.319]


Интересной разновидностью применения вольфрамового электрода является сварка погруженной дугой (рис. 40), при которой используют электрод повышенного диаметра и повышенный сварочный тон. Соединение собирают встык без разделки кромок, без зазора. При увеличении подачи защитного газа 1 через сопло  [c.48]

Пропитку заготовок обычно выполняют погружением их в масляную ванну с температурой 70—140 °С. Длительность пропитки колеблется от 15 мин до 2 ч. Степень заполнения пор при этом составляет 90—95 %. Более высокое заполнение пор маслом достигается при применении вакуумной пропитки.  [c.425]

Упрощенный метод измерения поляризационных кривых (см. с. 461) может быть применен для ускоренного внелабораторного определения коррозионной активности грунтов. Для этого исследуемую электролитическую ячейку заменяют длинным узким стержнем (зондом), на нижнем конце которого помещают два электрода нз предназначенного для эксплуатации в грунте металла с соединительными проводами. При испытаниях зонд может быть погружен в грунт на необходимую глубину, а соединительные провода служат для подключения электродов к измерительной установке (рис. 364).  [c.469]

При температурах, превышающих верхнюю границу применения водяных термостатов, в качестве теплоносителя до 200 °С используются легкие минеральные масла, а до 300 °С — тяжелые. Верхний предел использования масел определяется либо температурой вспышки, либо началом окисления, а для силиконовых масел — выделениями вредных веществ при температурах, превышающих 200 °С. Нижний предел для использования любых масел — температура, при которой вязкость становится слишком большой для обеспечения эффективного теплообмена. Так, вблизи комнатных температур, когда использование воды по тем или иным причинам исключается, существует диапазон, где удобно применение легких парафиновых или силиконовых масел. Однородность температурного поля вблизи нижней границы применения у масляных термостатов заметно хуже, чем у водяных. Выше 100 °С лучшая однородность находится в пределах 10 мК при изменении глубины погружения 50 см, а выше 200 °С — на уровне 50 мК при тех же изменениях.  [c.141]

Интенсивное изучение методов и техники точной реализации точек плавления и затвердевания металлов было проведено авторами работ [47—50] и [52—56]. Предел воспроизводимости, достигнутый при реализации точек затвердевания металлов, определяется скорее совершенством термометров, используемых для фиксации переходов, чем самими металлами. Необходимость обеспечить достаточную глубину погружения термометра в среду с измеряемой температурой является сложной проблемой (см. гл. 5). В зависимости от конструкции термометра требуется его погружение в зону однородных температур в пределах от 10 до 20 см, чтобы чувствительный элемент в пределах 0,5 мК соответствовал температуре окружения. Поскольку разница АТ между температурой чувствительного элемента и температурой окружения экспоненциально уменьшается с глубиной погружения, нет больших различий в глубине погружения для точки таяния льда, точки затвердевания олова и даже золота. Увеличение глубины погружения для разных конструкций термометров на 1,5—3 см приводит к уменьшению АТ примерно в 10 раз. В точках затвердевания металлов обычно можно обеспечить достаточную глубину погружения, однако при измерении платиновым термометром сопротивления температур других объектов всегда важным ограничением является однородность их температур. Поэтому выше 500 °С платиновым термометром трудно измерить температуру тела с точностью лучше 50 мК. Отметим в этой связи эффективность применения тепловых трубок для увеличения области очень однородной температуры.  [c.169]


Рис. 8.1. Основные элементы ртутно-стеклянного термометра стержневого типа. Для термометров, имеющих основную шкалу, не включающую температуру точки льда, может быть предусмотрена вспомогательная шкала, содержащая эту температуру. Отметка глубины погружения предусмотрена только для термометров частичного погружения. В газонаполненных термометрах предусмотрена расширительная камера для предохранения от чрезмерного давления при их работе на верхнем пределе диапазона применения, а также в других термометрах для избежания поломки при перегревах. 1—резервуар 2—-корпус 3 — камера сжатия 4 — расширительная камера 5 — основная шкала 6 — отметка глубины погружения 7 — вспомогательная шкала. Рис. 8.1. <a href="/info/279900">Основные элементы</a> <a href="/info/3932">ртутно-стеклянного термометра</a> стержневого типа. Для термометров, имеющих <a href="/info/276720">основную шкалу</a>, не включающую температуру точки льда, может быть предусмотрена вспомогательная шкала, содержащая эту температуру. Отметка <a href="/info/181239">глубины погружения</a> предусмотрена только для <a href="/info/276637">термометров частичного погружения</a>. В газонаполненных термометрах предусмотрена расширительная камера для предохранения от чрезмерного давления при их работе на верхнем пределе диапазона применения, а также в других термометрах для избежания поломки при перегревах. 1—резервуар 2—-корпус 3 — камера сжатия 4 — расширительная камера 5 — <a href="/info/276720">основная шкала</a> 6 — отметка <a href="/info/181239">глубины погружения</a> 7 — вспомогательная шкала.
Разновидности аргонодуговой сварки вольфрамовым электродом. Разработано несколько разновидностей сварки вольфрамовым электродом, основанных на увеличении проплавляющей способности дуги за счет увеличения интенсивности теплового и силового воздействия дуги на свариваемый металл. К этим разновидностям относятся сварка погруженной дугой, с применением флюса, при повышенном давлении защитной атмосферы, импульсно-дуговая, плазменная сварка.  [c.83]

Обычные краски на основе льняного масла не обеспечивают и защиты погруженных в воду металлических сооружений, за исключением, быть может, краткого периода времени — год или менее. В горячей воде срок их службы еще короче. Более качественную защиту в течение нескольких лет при обычной температуре можно обеспечить при применении четырех или пяти слоев краски на основе синтетического связующего, как это и делается в химической промышленности. Ввиду большой стоимости подобных многослойных покрытий, при работе в пресной и морской воде вместо них также используют толстые битумные покрытия.  [c.249]

Для сборки мелких моделей в блоки широкое применение получили металлические стояки, выполняемые полыми из металлических труб (алюминиевых сплавов). На стойки наращивают слой модельного состава толщиной 2-5 мм последовательным многократным погружением их в расплав модельного состава (4-5 раз) с охлаждением после каждого погружения в течение 8 -10 мин.  [c.198]

Условия плавания тел. Закон Архимеда нашел большое практическое применение, на нем основана теория плавания тел. Из закона следует, что на тело, погруженное в жидкость, в итоге действуют две силы вес тела G, приложенный в центре тяжести тела и направленный вниз, и подъемная сила приложенная в центре водоизмещения и направленная вверх.  [c.271]

В морских конструкциях находят все большее применение алюминиевые сплавы. Это способствует облегчению транспортировки и монтажа конструкций в открытом море при сохранении достаточной прочности и требуемой долговечности. К числу сплавов, получивших наибольшее распространение в погружаемых конструкциях, относятся сплавы А1 — Mg. Алюминиевые сплавы, как известно, склонны к питтингу, однако, несмотря на повышение солености воды по глубине моря, увеличение глубины питтингов в глубь моря неравномерно. Она оказалась наибольшей на глубине около 700 м в Тихом океане, т.е. в зоне наименьшей концентрации кислорода (рис. 7). Отсюда следует, что питтинговая коррозия алюминиевых сплавов зависит не столько от глубины погружения в море, сколько от концентрации кислорода. Склонность различных алюминиевых сплавов к питтинговой коррозии можно сравнить, измеряя их потенциал в морской воде. Сплавы с более электроотрицательным потенциалом проявили большую склонность к питтинговой коррозии, чем сплавы с более электроположительным потенциалом. Особенно склонны к питтингу высокопрочные сплавы, а сплавы серии Al-Mg сравнительно невосприимчивы к этому виду коррозии, однако при глубоком погружении даже эти сплавы подвержены довольно сильному питтингу.  [c.23]


Чаще всего на практике применяется оксидная изоляция именно на алюминии (имеется в виду не естественный, весьма тонкий слой оксида, использующийся для изоляции лишь при малых, менее 1 В, напряжениях между соприкасающимися алюминиевыми проводами, а получаемый путем специальной обработки сравнительно более толстый оксидный слой), которая имеет существенно большие пробивные напряжения (рис. 6-46). Практически оксидная изоляция алюминия получается посредством электрохимической анодной обработки этого металла. Если в ванну с кислотным электролитом погрузить два электрода, один из которых выполнен из алюминия, и подать на них постоянное напряжение так, чтобы алюминиевый электрод являлся анодом и на нем выделялся бы кислород, то сила тока, идущего через ванну, будет быстро уменьшаться, а на поверхности алюминиевого электрода, погруженного в ванну, будет образовываться все более толстая оксидная пленка. Возможно применение для оксидирования алюминия и переменного напряжения, причем оба электрода или большее их число (при многофазном напряжении) изготовляются из алюминия.  [c.183]

Растворы 1 3 применяются для оловянирования меди и ее сплавов методом погружения, растворы 4 и 5 рекомендуются для покрытия оловом изделий из стали и других металлов с применением контакта из цинка, раствор 6 для покрытия алюминия При покрытии мелких деталей во вращающихся барабанах (например, в растворе 4) продолжительность процесса составляет 2—4 ч  [c.89]

Если шлиф при погружении остается светлым или не принимает желаемой окраски, то это значит, что раствор слишком кислый или спиртовой. При добавке нескольких капель калийного щелока или лимонной кислоты этот недостаток быстро устраняется. Раствор неограниченно устойчив и вследствие его высокой концентрации почти не изменяется даже при очень частом применении.  [c.224]

Технология погружения находит применение в полностью механизированных или автоматизированных производствах. Она отличается высокой экономичностью и использованием лакокрасочного материала почти без потерь. Качество лакокрасочного покрытия зависит от свойств и консистенции применяемого лакокрасочного материала, скорости погружения, формы изделия, способа смешивания краски и т. д. Для механизированного погружения  [c.86]

Покрытия смазочными материалами можно наносить толстыми слоями таким образом они будут обеспечивать более эффективную защиту, чем масляные покрытия. Толстый слой смазочного материала не допускает попадания частиц пыли на защищаемую металлическую поверхность, как это часто бывает при защите слоями масла. Смазочный материал применяют для долговременной защиты и в жестких климатических условиях. Однако необходимо учитывать, что точка каплепадения смазочных материалов составляет 60° С, что ограничивает их применение. Консервирующий слой должен быть сплошным, равномерным и по возможности иметь одинаковую толщину, составляющую не менее 0,4 мм. На мелкие детали покрытия наносят погружением в нагреваемые ванны. Свежеприготовленную ванну необходимо нагревать не менее 30 мин при температуре 110° С, а для ингибированных масел— до 95° С, чтобы удалить абсорбированную влагу. Рабочая температура должна равняться примерно 70° С. При нанесении двойного слоя первое погружение проводят в ванне температурой S5° С в течение 3—8 мин, второе — после охлаждения изделия до 40° С — в ванне температурой 70° С в течение 1—3 мин. Затем  [c.105]

Удаление поверхностных загрязнений должно предшествовать последующей обработке. Основной способ удаления загрязнений такого вида с поверхности металла заключается в применении специальных обезжиривающих средств. В качестве простейшего из них может послужить органический растворитель (например, четыреххлористый углерод, бензин, ацетон) при комнатной температуре, обработка которым производится путем погружения или промывки изделия, подготавливаемого к нанесению покрытия. Масла, жиры, лаки размягчаются под действием растворителя и выводятся в раствор, а образовавшийся нерастворимый осадок и металлические частицы отделяются и опускаются на дно ванны для обезжиривания. Однако простое погружение или промывка в холодном растворителе является неэффективным средством очистки. Возникают трудности, связанные с выведением токсичных паров с поверхности растворителя кроме того, в ванне грязь и жир, удаляемые с изделий, образуют эмульсию, которая сохраняется в виде пленки на поверхности вынутого из растворителя и просушенного металла.  [c.54]

Наиболее эффективным способом травления в случае образования больших, плотных и клейких окалин является использование расплавленных солей (едкого натра или гидрида натрия NaH). Химическое воздействие на окалину расплавленной соли сочетается с нарушением сплошности окалины за счет различия коэффициентов линейного расширения окалины и основного металла под действием тепла при погружении изделия в ванну с расплавленным раствором. Этот метод травления находит все более широкое применение и дает наибольший эффект при сведении процессов удаления окалины и термообработки в одну операцию. Однако при этом требуются специальное оборудование и квалифицированные рабочие. Процесс является дорогостоящим и опасным. Кроме того, его нельзя применять в том случае, если воздействие высоких температур неблагоприятно скажется на механических свойствах металла, с которого удаляется окалина. Что касается химической очистки, то электрохимическое воздействие (анодная либо катодная поляризация) или использование ультразвука может улучшить действие травления.  [c.60]

Эффективная анодная реакция цинка при контакте со сталью делает его превосходным материалом для нанесения покрытия в различных случаях применения, включая погружение в морскую и пресную воду или почву. Скорость расхода цинка увеличивается в воде с высоким содержанием хлора, но в ней-  [c.122]


Насос ЦВН-1-2 в верхней части не отличается от насоса ЦВН-0,1-1, а в нижней состоит из двух концентрических цилиндров 7 диаметром 120 мм и 8 диаметром 80 мм и высотой 250 мм, пространство между которыми заполняется цеолитом. При погружении корпуса насоса в жидкий азот цеолит, лежащий слоем 20 мм, охлаждается со стороны внутреннего и внешнего цилиндров. В качестве газопоглотителя при откачке воздуха рекомендуется применять цеолит марки 5А, обладающий высокой сорбционной способностью. Для поглощения воздуха возможно применение цеолита и других марок, например 10Х и 13Х. Цеолит перед загрузкой в корпус насоса подвергают активированию на воздухе в течение 20 ч при температуре 500—550 С, затем в горячем состоянии загружают в насос, после чего дополнительно активируют прогревом в насосе в атмосфере воздуха в течение 3 ч.  [c.41]

Толщина покрытия при горячем цинковании зависит от продолжительности цинкования и химического состава стали, на которую оно наносится (рис. 59) [7], Применение горячего цинкования ограничивается размерами ванны, в которой производят цинкование. Однако, используя двукратное погружение, можно цинковать и длинные детали (рис. 60). Все поверхности деталей должны быть доступны для расплава цинка (рис. 61).  [c.81]

Никель — графитовое волокно. Композиционный материал никель — углеродное волокно получали горячим прессованием прядей графитового волокна, уложенных в одном направлении, на которые предварительно наносилось электролитическим методом никелевое покрытие толщиной 1—3 мкм [203, 204]. Для предотвращения взаимодействия волокна с никелевой матрицей на углеродное волокно наносят карбидные покрытия (патент США № 3796587, 1972 г.). В качестве примера применения карбидного покрытия на графитовом волокне может служить покрытие из карбида титана, наносимое на волокно методом его погружения в расплав, состоящий из металла-носителя, не взаимодействующего с волокном, например индия и растворенного в нем титана. Расплав содержал 99,5% индия и 0,5% титана. Для покрытия волокно погружали в такой расплав, нагретый до температуры 850° С, на 4 мин. После отмывки этого волокна в течение 15 мин в 50%-ном растворе соляной кислоты на поверхности графитового волокна оставался слой покрытия карбида титана толщиной 0,5 мкм. Режимы диффузионной сварки углеродного волокна с никелевым покрытием, приведенные в указанных выше работах, примерно одинаковы. Во всех случаях прессование осуществлялось в вакууме 2-10 —1 10 мм рт. ст. при температуре 840—1100° С, давлении 100—175 кгс/см в течение 45—60 мин. Оптимальный режим получения композиционного материала с углеродным волокном без нанесенного предварительного защитного покрытия температура 1050° С, давление 140 кгс/см и время выдержки 60 мин. Полученный по такому режиму материал, содержащий 46—55 об. % волокна Торнел-50, имел предел прочности 55—73 кгс/мм .  [c.143]

На рис. 2.42 приведены результаты испытания плоской модели (рис. 2.43) из полиуретана, скрепленной с оболочкой из эпоксидного материала [123]. Оба материала имеют примерно одинаковую плотность. Отношение модулей упругости 1/ 2=ЮОО, а коэффициент Пуассона полиуретана 0,5, так что условия применения аналогии с погружением выполняются достаточно то ЧН 0.  [c.67]

Ориентировочное сравнение СМС и РЭС при одинаковом способе применения погружением в ванну показыва-228  [c.228]

Смазка передач. Для ответственных силовых передач применяют картерную смазку за счет погружения ведомой ветви в масляную ванну или интенсивного разбрызгивания смазки специальными выступами или кольцами, наиболее совершенной является циркуля-циолная смазка под давлением от насоса с применением фильтров.  [c.72]

Уменьшение площади сечения наплавленного металла при заданной толщине свариваемого металла достигается соответствующей разделкой кромок, например применением двустороннего скоса кромок вместо одностороннего. Уменьшение Р за счет увеличения глубины и площади проплавления достигается сваркой методом опирания (с глубоким проваром, погруженной дугой). Сущность способа заключается в том, что электрод опирают с легким нажимом покрытия о свариваемый металл под углом 15—20° к вертикали, перемещают углом назад по линии наложения валика без поперечных колебаний. Используют электроды с повышенной толщиной покрытия. Силу сварочного тока увеличивают на 20—40% и выбирают поформуле / в=(60+70) а. Увеличенная мощность сварочной дуги, концентрированный ввод тепла, быстрое перемещение электрода под углом и интенсивное вытеснение расплавленного металла сварочной ванны из-под дуги давлением дуги создают условия для глубокого провара при минимальном разбрызгивании. Этот метод используют при сварке в нижнем положении стыковых швов и угловых в лодочку .  [c.71]

Выплавление в модельиом сжтаае. Этот процесс нашел наибольшее применение в производстве, т.е. модели из воскообразных составов удаляют из формы погружением их в ванну, которая содержит тот же модельный состав.  [c.228]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

В случае применения ЛБТ из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их со стальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии. При нагружении таких соединений переменными нагрузками возникают процессы фреттинг-корро-зии. При проведении спуско-подъемных работ наблюдается периодическое смачивание при чередовании атмосферной коррозии и коррозпи погружением в электролит, что стимулирует увеличение скорости коррозионного разрушения.  [c.107]

Для предотвращения чрезмерного повышенгш температуры масла оценивают тепловой баланс между тепловыделением и теплоотдачей и при необходимости принимают меры по уменьшению тепловыделения или увеличению теплоотдачи. В первом случае за счет ограничения глубины погружения червяка в масло, применения маслоразбрызгивающих колец, верхнего размещения червяка и др. уменьшают потери на разбрызгивание и размешивание масла. Повышают также КПД передачи путем уменьшения шероховатости витков червяка, сни-жешзя коэффициента трения в контакте за счет подбора масла.  [c.379]

Гашение кинетической энергии струи пароводяной смеси и начальное разделение последней в барабане 1 котла среднего давления осуществляется с помощью отбойных щитков 2 (рис. 105, а), жалюзидроссельных стенок с горизонтальным расположением пластин и т. п., а в барабане котла высокого давления с помощью внутрибарабанных циклонов 6 (рис. 105, б). Равномерность распределения пара по сечению барабана и пароотводящим трубам обеспечивается применением уравнительных дроссельных щитов как в водяном объеме (погруженный щит 12 с отверстиями, рис. 105, в), так и в паровом объеме на выходе из барабана (пароприемный потолок 4, рис. 105, а, б).  [c.160]


Термореактивные полиэфиры на основе фталевой кислоты называют глифталевыми смолами, которые на практике находят применение после модификации жирными кислотами. Электроизо-1лшщшаше лаки м основе модифицированных глифталевых смол применяются для пропитки обмоток электрических машин, трансформаторов и других аппаратов, работающих в погруженном состоянии в минеральном Масле.  [c.212]

Горячее стекло благодаря пластичности легко обрабатывается путем выдувания (ламповые баллоны, химическая посуда), вытяжки (листовое стекло, трубки, шта-бики), прессования и отливки нагретые стеклянные части приваривают друг к другу, а также к деталям из других материалов (металлы, керамика и пр.) Листовое стекло получается на машинах Фурко посредством вытягивания полосы стекла сквозь фильеру в ша.мотной заслонке, погруженной в расплавленную стекломассу бутылки, ламповые баллоны производятся на машинах-автоматах чрезвычайно большой производительности. Изготовлевшые стеклянные изделия должны быть подвергнуты отжигу, чтобы устранить механические напряжения, образовавшиеся в стекле при быстром и неравномерном его остывании. При отжиге изделие нагревают до некоторой, достаточно высокой температуры (температура отжига), а затем подвергают весьма медленному охлаждению. Механическая обработка стекла в холодном состоянии сводится к резке (алмазом), сверловке, шлифовке и полировке. Сверловка стекла может производиться инструментами из свер.чтвердых сплавов, например победита, или латунными сверлами с применением абразивов. Металлизация стекла осуществляется различными путями в зависимости от особенностей изделия нанесением металла методом возгонки в вакууме, методом вжигания серебряной или платиновой пасты, шоопированием и химическим методом осаждения серебра,  [c.164]

Бенедикс и Зедерхольм [4] изучали это явление. Оказалось, что слабо диссоциированный раствор, например сниртовый раствор 0,1%-ной азотной кислоты, пассивирует шлиф. Окисная пленка не образуется, если в этом растворе увеличить степень диссоциации травителя разбавлением водой. В растворе азотной кислоты скорость взаимодействия зависит от природы растворителя и растет с увеличением электрической проводимости [5]. Растворители по уменьшению проводимости и степени диссоциации можно расположить в следующий ряд вода, метиловый спирт, этиловый спирт, глицерин, пропиловый спирт, изоамиловый спирт, уксусный ангидрид, амилацетат. Применение спиртовых реагентов улучшает равномерность травления и позволяет использовать кислоты высокой концентрации. Пониженная степень диссоциации спиртовых растворов позволяет повысить концентрацию кислоты в реактиве. В растворе наряду с ионами водорода и кислотными радикалами присутствуют недиссоциированные молекулы кислоты. В результате меньшей диссоциации спиртовые растворы используются более длительное время, чем водные. Улучшение равномерности травления спиртовыми реагентами по сравнению с водными происходит вследствие того, что спирт удаляет следы жира с поверхности шлифа [6] и имеет с ней большую адгезию, чем вода. Скорость смачивания зависит от поверхностного натяжения действующего травителя и сказывается уже при погружении шлифа в сниртовый раствор.  [c.32]

Травитель 3 [25 мл НС1 8 г Fe lg 100 мл HjO или 100 мл спирта]. Солянокислые растворы хлорного железа относятся к самым распространенным реактивам (рис. 67). Их применяют как для травления меди, так и ее сплавов, но в зависимости от способа травления они оказывают различное действие. Травление погружением применяют для выявления поверхности зерен, рассматриваемых затем при малых увеличениях. При больших увеличениях эти поверхности выглядят слишком шероховатыми. При применении спиртового раствора четче проявляется периодическое отражение. Продолжительность травления составляет около 30 с.  [c.184]

Компоненты раствора рекомендуют держать раздельно и смешивать только непосредственно перед применением в соотношении, указанном для реактива 9. Образцы протравливают погружением. Макрокартина деформации появляется после 10 с травления и постепенно становится ярче. Перетравли-вание образцов исключено. Реактив можно применять для любого сплава, например а-, (а + Р)- и р-латуни. Вполне возможно при помощи этого раствора выявлять деформированные участки и напряжения во всех других медных сплавах, так как реактив пригоден как макрореактив для выявления общей структуры.  [c.197]

Травитель 48 [23 мл Н3РО4 0,6 мл 40%-ной HF 100 мл НаО]. В этом растворе для травления, также рекомендуемом в работе [4], образцы травят погружением в течение 5 мин. Последующая обработка точно такая же, как при применении реактива 47. Если действие реактива ослабевает, следует добавить 0,5 мл плавиковой кислоты.  [c.266]

Электрофоретическое нанесение лакокрасочных материалов, растворимых в воде, представляет собой усовершенствованный способ погружения, недостатки которого устранены действием электростатического поля. Электрофорез основан на ориентированном перемещении коллоидных частиц в диэлектрической среде. При наложении электрического тока возникают два процесса. Первый — это электролиз, характеризующийся перемещением ионов, образовавшихся при диссоциации электролита. Второй — собственно электрофорез, т. е. движение коллоидных частиц под действием электрического поля в среде с высокой диэлектрической постоянной. Частицы в соответствии со своей полярностью движутся к одному из электродов. Отрицательно заряженные частицы движутся к аноду, т. е. к изделию. На аноде или в непосредственной близости от него происходит потеря электрического заряда и коагуляция частиц. Одновременно с электрофорезом происходит и электроосмос, т. е. процесс, при котором под действием разности потенциалов из лакокрасочного материала вытесняется диспергирующий агент, например вода, и слой загустевает. Технологическим достоинством этого способа является возможность обеспечения высокой степени автоматизации, при которой потери лакокрасочного материала не превышают 5%. Достигается равномерная толщина слоя, которую можно регулировать в пределах 8—45 мкм. Слой не имеет пор и видимых дефектов. Коррозионная стойкость его примерно в 2 раза выше, чем у лакокрасочных покрытий, полученных способом погружения. Линия, в которой использована такая технология, в основном состоит из оборудования для предварительной подготовки поверхности, оборудования для непосредственно электрофоретического нанесения, включая соответствующую промывку, и оборудования для предварительной и окончательной сушки лакокрасочного покрытия при температуре 150—220° С в течение 5—30 мин. Способ нашел применение в автомобильной промышленности, на предприятиях по производству мебели, металлических конструкций для строительства и в других областях.  [c.87]

Принцип саморегулируемого вакуума был применен для изготовления композиционного материала магний — бор методом пропитки [171 ]. В основе этого принципа лежит взаимодействие расплавленного магния с воздухом в закрытом контейнере и образование при этом разрежения, способствующего заполнению контейнера расплавленным металлом. При погружении открытого конца герметичного контейнера ниже уровня расплавленного металла магний взаимодействует с кислородом, азотом и углекислым газом, входящими в состав воздуха. Поскольку продукты реакции являются твердыми веществами имеют пренебрежимо малое давление паров при температуре реакции, в контейнере генерируется вакум. Ракция идет до тех пор, пока весь воздух в контейнере не будет связан, и, таким образом, в контейнере создается почти абсолютный вакуум. Весьма важным при этом является то, что, продолжая взаимодействовать с воздухом, остающимся в порах, образование которых возможно в начальной стадии заполнения формы, магний полностью заполняет форму. Магний является почти единственным из металлов, который можно заливать по методу самогенерируемого вакуума в формы слождой конфигурации, предназначенные для отливки деталей с очень тонкими стенками. Одним из преимуществ метода самогенерируемого вакуума является его сравнительная простота, а также 100  [c.100]

Различные примеры применения центробежного моделирования для изучения прочности деформируемых сооружений и конструкций приведены в работах Г. И. Покровского и И. С. Федорова [50, 51]. Указанное правило моделирования справедливо и для ком-позитных конструкций. При этом вместе с иопользованием центрифуги в ряде случаев может оказаться полезным применение метода погружения модели в тяжелую жидкость [15]. Эю позволяет увеличить коэффициент перегрузки, не изменяя скорости вращения центрифуги, а также изменить -соотношенне удельных весов элементов композитной модели.  [c.69]

Такое несоответствие между результатами испытаний при переменном погружении в раствор 3,5% Na l и результатами испытаний в промышленной атмосфере является обычной проблемой и для других сплавов с низким содержанием меди, в том числе и для сплава 7079-Т6 (см. рис. 45). Во всяком случае после того, как были опубликованы результаты испытаний сплава Х7080-Т7 в промышленной атмосфере, предназначенного для применения в виде крупногабаритных полуфабрикатов, интерес к нему значительно уменьшился, особенно после получения хороших результатов на крупногабаритных полуфабрикатах нескольких других сплавов.  [c.266]

Некоторые меры защиты, такие как дробеструйная обработка и нанесение покрытий, способствуют значительному замедлению КР однако они не исключают необходимости разработки сплавов, стойких к КР. Возможна следующая последовательность стадий, приводящая к разрушению полностью защищенной детали (рис. 143). Механическое разрушение может вызвать потерю защиты анодного слоя, грунта и верхнего покрытия, таким образом среда достигает нагартованного дробеструйной обработкой слоя. В соответствующих условиях пнттинговая коррозия может привести к сквозному в нагартованном слое поражению, способствующему зарождению КР в нестойком материале в присутствии растягивающих напряжений. Следует остановиться на требованиях в инструкциях воздушных сил США, согласно которым штамповки и прессованные алюминиевые материалы, применяемые в авиации в коррозионных средах, необходимо подвергать предварительно испытаниям в течение 2000 ч при переменном погружении без защиты в коррозионную среду. Окончательная механическая обработка должна гарантировать отсутствие высоких остаточных поверхностных напряжений растяжения [252 а]. Лучшим путем исключения требований, связанных с проведением таких испытаний, является применение стойких к КР материалов.  [c.310]



Смотреть страницы где упоминается термин Применение погружением : [c.136]    [c.67]    [c.84]    [c.198]    [c.75]    [c.64]    [c.167]   
Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.446 ]



ПОИСК



Погружением



© 2025 Mash-xxl.info Реклама на сайте