Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация охлаждении

Необходимость применения горячего инструмента, температура которого должна сохраняться в течение всего процесса деформации. Охлаждение деформируемой заготовки за счет соприкосновения с холодным инструментом приводит к резкому уменьшению параметра т н потере сверхпластичности.  [c.570]

Промежуточную термическую обработку сталей этого класса проводят обычно для снятия наклепа при произ водстве тонкого листа или проволоки При этом после смягчающей термической обработки или горячей деформации охлаждение от 900—1000 °С должно быть ускоренным,, чтобы предотвратить охрупчивание  [c.287]


Условия горячей механической обработки (температура, скорость, величина и усилие деформации, охлаждение после деформации и т. д.) определяются химическим составом стали, методом вы-  [c.99]

Для борьбы с деформацией металла при сварке можно рекомендовать 1) обратноступенчатый порядок нанесения швов, при котором длинный шов делится на участки длиной 150—200 мм и сварка ведется отдельными участками, что препятствует концентрации тепла в одном месте и уменьшает зону разогрева изделия 2) деформирование детали перед сваркой в обратном направлении на ту же величину, которая вызывается сваркой этот способ обычно применяют для изделий с несимметричным расположением швов 3) уравновешивание деформаций, т, е. выбор такого порядка наложения швов, чтобы последующий шов вызывал деформации, обратные тем, которые получились при наложении предыдущего шва 4) увеличение отвода тепла от свариваемого изделия уменьшает объем нагретого металла и соответственно его деформацию. Охлаждение достигается погружением частей детали в воду или применением медных подкладок под деталь 5) жесткое закрепление элементов при сварке различных узлов в специальных приспособлениях.  [c.505]

Для изотермического деформирования применяют гидравлические прессы, хотя для. этой цели можно использовать и другое оборудование. При этом скорость деформации может быть сколь угодно малой величиной и нижний ее предел ограничен только производительностью процесса. При уменьшении скорости деформации можно штамповать при значительно меньшем по сравнению с обычными условиями горячей штамповки сопротивлении металла деформированию. Например, сравнивали удельное усилие осадки в торец образцов диаметром 15 и высотой 20 мм из сплава ВТЗ-1 в обычных условиях на кривошипном прессе и в изотермических условиях на гидравлическом прессе без смазки при температуре 900° С. Температура нагрева штампов при штамповке на кривошипном прессе составляла 250° С. При деформации —60 % подстуживание торцов заготовки существенно не влияет на усилие деформирования. Отношение удельных усилий при штамповке на кривошипном прессе в условиях изотермической штамповки равно 2. Разница в усилии определяется только влиянием скорости деформации. Охлаждение заготовки при уменьшении ее толщины увеличивает усилие осадки на кривошипном прессе. При деформации 80% отношение удельных усилий составляет уже 2,8 [35].  [c.22]

При высокотемпературной термомеханической обработке (В. Т. М. О) пластическую деформацию проводят при температурах устойчивости аустенита — выше точки Лд(Л1) с последующей закалкой и отпуском (рис. 68). В. Т. М. О заключается в нагреве до температуры, соответствующей образованию аустенита, выдержке при этой температуре, пластической деформации, охлаждении со скоростью, обеспечивающей протекание мартенситного или (реже) бейнитного превращения, и последующем отпуске.  [c.77]


Относительная остаточная деформация охлажденного образца  [c.432]

В связи с этим необходимо учитывать условия, в которых осуществляется технологический процесс сварки химический состав, размеры и толщину свариваемого металла температуру окру каю-щего воздуха режим сварки, определяющий долевое участие основного металла в формировании шва скорость охлаждения металла шва и зоны термического влияния (з. т. в.) химический состав присадочных материалов их долевое участие в формировании шва, характер протекающих в капле, дуге и сварочной ванне реакций величину пластических деформаций растяжения, возникающих в металле шва, и з. т. в. при его охлаждении.  [c.171]

При выборе сварочных материалов для сварки ферритных высокохромистых сталей необходимо учитывать возможное отрицательное проявление различия в коэффициентах теплового рас-ши])еиия основного металла и металла швов. Заметное различие коэффициентов теплового расширения основного металла и металла швов приводит к накоплению локальных деформаций после каждого цикла нагрева и охлаждения.  [c.278]

Первая группа. Предшествующая обработка может привести металл в неустойчивое состояние. Так, холодная пластическая деформация создает наклеп — искажение кристаллической решетки. При затвердевании не успевают протекать диффузионные процессы, и состав металла даже в объеме одного зерна оказывается неоднородным. Быстрое охлаждение или неравномерное приложение напряжений делает неравномерным распределение упругой деформации. Неустойчивое состояние при комнатной температуре сохраняется долго, так как теплового движения атомов при комнатной температуре недостаточно для перехода в устойчивое состояние.  [c.225]

Имеется еще много других вариантов ТМО, различающихся условиями нагрева или охлаждения, характером деформации и другими деталями, описывать которые здесь не представляется возможным.  [c.282]

Чем больше углерода содержит сталь, тем больше объемные изменения при превращении, тем при более низкой температуре происходит превращение аустенита в мартенсит, тем больше опасность возникновения деформаций, трещин, напряжений и других закалочных пороков, тем тщательнее следует выбирать условия закалочного охлаждения для такой стали.  [c.302]

После охлаждения до комнатной температуры аустенитное состояние сохраняется, при этом точка Мп лежит еще ниже комнатной температуры, но точка Мо вследствие обеднения аустенита углеродом и легирующими элементами переместилась в зону положительных температур. Деформация во время испытания при комнатной температуре ведет, к образованию мартенсита. Таким образом исходное, аустенитное, сравнительно малопрочное состояние в процессе испытания (или эксплуатации) в результате пластической деформации превращается в высокопрочное, мартенситное.  [c.395]

Меньшая скорость охлаждения при закалке уменьшает опасность образования трещин, деформации и коробления, к чему склонны углеродистые инструментальные стали. Это важно для многих видов инструментов, имеющих сложную конфигурацию.  [c.415]

При температурах ниже температуры начала рекристаллизации, наблюдается явление, называемое возвратом. При возврате (отдыхе) форма и размеры деформированных, вытянутых зерен не изменяются, но частично снимаются остаточные напряжения. Эти напряжения возникают из-за неоднородного нагрева или охлаждения (при литье и обработке давлением), неоднородности распределения деформаций при пластическом деформировании и т. д. Остаточные напряже-  [c.56]

Холодные трещины возникают в области упругих деформаций, когда сплав полностью затвердел. Тонкие части отливки охлаждаются и сокращаются быстрее, чем толстые. В результате в отливке образуются напряжения, которые и вызывают появление трещин. Холодные трещины чаще всего образуются в тонкостенных отливках сложной конфигурации и тем больше, чем выше упругие свойства сплава, чем значительнее его усадка при пониженных температурах и чем ниже его теплопроводность. Опасность образования холодных трещин в отливках усиливается наличием в сплаве вредных примесей (например, фосфора в сталях). Для предупреждения образования в отливках холодных трещин необходимо обеспечивать равномерное охлаждение отливок во всех сечениях путем использования холодильников применять сплавы для отливок с высокой пластичностью проводить отжиг отливок и т. п.  [c.126]


Деформацию изгиба (рис. 5.60, а) можно исключить предварительным обратным прогибом балки перед сваркой (рис. 5.60, б) рациональной последовательностью укладки швов относительно центра тяжести сечения сварной балки (рис. 5.60,6, в случае несимметричной двутавровой балки вначале сваривают швы I и 2, расположенные ближе к центру тяжести) термической (горячей) правкой путем нагрева зон, сокращение которых необходимо для исправления деформации заготовки, до температур термопластического состояния (рис. 5.60, г штриховкой показаны зоны нагрева). При правке заготовки нагревают газовым пла.менем или дугой с применением неплавящегося электрода. Разогретые зоны претерпевают пластическую деформацию сжатия, а после охлаждения — остаточное укорочение. Последнее обусловливает дополнительную деформацию сварной заготовки, противоположную но знаку первоначальной внешней сварочной деформации. Подобную деформацию можно также получить, если наложить в указанных зонах холостые сварные швы.  [c.252]

Включить двигатель перемещения ленты. Как только лента начнет равномерно перемещаться по экрану, начать наплавку валика на кромку полосы с одновременным включением механизма отсечки времени., Во время сварки отмечать силу тока, напряжение и время горения дуги. После наплавки валика длиной около 100 мм сварку прекратить, тогда начинается естественное охлаждение пробы. В момент, когда оба карандаша будут отмечать параллельные линии на ленте, что свидетельствует о прекращении деформации пластины, выключить установку,  [c.72]

Почему искусственное охлаждение и подог рев уменьшают остаточные деформации  [c.81]

Как влияет интенсивное охлаждение на остаточные деформации сварных соединений  [c.81]

Тепловые деформации происходят по причинам 1) нагрева теплом, выделяющимся при резании металла 2) нагрева теплом, образующимся при трении движущихся частей станка 3) непостоянства температуры помещения, вследствие чего происходят неравномерный нагрев или охлаждение системы станок — приспособление — инструмент — деталь.  [c.61]

При обработке с охлаждением детали и инструмента смазывающе-охлаждающей жидкостью тепловые деформации всей системы станок — приспособление — инструмент — деталь значительно уменьшаются.  [c.61]

Сущность этого процесса заключается в кратковременном нагреве поверхностного слоя на глубину 1—3 мм металла, который подвергается закалке. Остальная часть металла не нагревается, что исключает деформацию шпинделя. Нагрев и охлаждение закаливаемых поверхностей происходят при помощи специальных индукторов. Обычно подвергаются закалке поверхности наружного конуса под патрон и конического отверстия в переднем конце. Опорные шейки закаливаются при применении подшипников скольжения.  [c.370]

В случае изменения объема в результате нагрева и охлаждения за счет собственно структурных превращений начальные деформации ео = еР + Де , где Aej — деформация, отвечающая гистерезису дилатометрической кривой (см. гл. 5).  [c.201]

Рис. 5.6. Зависимость температурной деформации е от температуры Т при нагреве и охлаждении для основного металла (/, 2) и аустенитного металла шва (3) Рис. 5.6. <a href="/info/191882">Зависимость температурной</a> деформации е от температуры Т при нагреве и охлаждении для <a href="/info/384895">основного металла</a> (/, 2) и аустенитного металла шва (3)
Здесь сказывается влияние структурных превращений, приводящих к низким ОСН за счет увеличения объема металла при охлаждении в момент превращения. При выполнении следующего прохода температура в рассматриваемой области не достигает Ti. Следовательно, вторичного Fea — Fev-превращения и соответственно увеличения объема металла за счет этого превращения не будет. Тем не менее эта температура достаточно велика, чтобы при нагреве возникли такие остаточные пластические деформации укорочения, которые могут при охлаждении материала увеличить растягивающие ОСН до значений, близких к  [c.287]

В результате деформации формоизменения при низких температурах образуется мартенсит деформации. Охлаждение до этих температур не меняло исходного фазового состава сплавов. Количество образующегося мартенсита с разных сторон пластины различное,— с выпуклой при изгибе стороны количество мартенсита больше, чем с внутренней вогнутой. Изменение фазового состава по глубине пластины происходило немонотонно и в результате однородный по химическому составу материал различался по структурному состоянию. Изменение формы пластины при циклическом изменении температуры может осуществляться вследствие различия коэффициентов термического расширения а- и 7-фаз (механизм псевдобиметалла) и изменения соотношения фаз в результате протекания у а-превращения [170].  [c.146]

Технологические параметры. Стали 12X17, 08Х17Т и 08Х18Т1 технологичны при операциях горячей пластической деформации однако, при их переделе следует соблюдать определенные предосторожности, обеспечивающие получение качественного металла. Температурный интервал горячей пластической деформации составляет начало 950—1050 С, окончание 720—800° С. Относительно низкий температурный интервал горячей пластической деформации имеет целью получить возможно более мелкое ферритное зерно. После деформации охлаждение проводят на воздухе. При горячей пластической деформации литого металла или деформированного в достаточно больших сечениях рекомендуется осуществлять медленный подогрев до 600—800 С. а затем — быстрый, т. е. с посадкой в печь с заданной температурой.  [c.56]

Линия 5 — ( горбик ), которая может быть начальным участком каждой яз перечисленных -ранее четырех кривых (1, 2, 3. 4). Появление такого горбика связано, как правило, с больщими ускорениями в начале процесса. Высоту горбика расчетным путем определить не удается ее приходится учитывать особым эмлирически.м, коз(ффициентом т), значения которого указаны далее. Поэтому определение силы Гкр и остальных ведется без учета горбика . При таком допущении линии 2 к 4 показывают, что в соответствующих им стадиях прессования из.меняется, по крайней мере, по два силовых фактора. Наиболее вероятными для линии 2 являются одновре.менное уменьщение поверхности скольжения и сил трения о контейнер и увеличение внутренних сдвигающих напряжений вследствие снижения температуры в очаге деформации (охлаждение металла). Наиболее вероятным для линии 4 является одновременное изменение поверхности скольжения и напряжения трения.  [c.188]


При сварке низкоуглеродистых сталей обычными методами химический состав металла шва, характеризуелп>1й эквивалентным содер/канием углерода Сэш, незначительно отличается от химического состава основного металла, характеризуемого также эквивалептпыл содержанием углерода Сэо- Для тих сталей Сэо 0,21 0,35% и Сэ.ш = 0,20 0,30%. Механические свойства металла шва зависят в основном толы о от скорости его охлаждения и пластических деформаций растяжения, возпикающих в металле шва при его остывахгии.  [c.199]

Ускоренное охлаждение стали в некоторых композициях аусте-нитных стале11 может привести к фиксации в их структуре первичного б-феррита, в некоторых случаях необходимого с точки зрения предупреждеиия горячих трещин. Холодная деформация, в том числе и наклеп закаленной стали, в которой аустенит зафиксирован в неустойчивом состоянии, способствует превращению Y а. Феррит, располагаясь тонкими прослойками по границам аустенитпых зереп, блокирует плоскости скольжения и упрочняет сталь (рис. 140). Упрочнение стали тем выше, чем ниже температура деформации. Обычно тонколистовые хромоникелевые стали в состоянии поставки имеют повышенные прочностные и пониженные пластические свойства. Это объясняется их повышенной деформацией при прокатке и пониженной температурой окончания прокатки.  [c.283]

Подготовка кромок зависит от толщины металла. При толщине металла б 5 мм — без скоса кромок, при 6 == G 12 мм — V-образная и при большей толщине — Х-образная разделка с углом раскрытия 70—90 для неплавящегося электрода и 60— 70 для плавящегося без притупления. Детали под сварку собирают па прихватках (luar до 400 мм) или в специальных жестких приспособлениях, обеспечивающих мепьшие деформации. Для формирования корня шва используют подкладки из предварительно про-калеино] о графита или меди (в этом случае с водяным ее охлаждением). Металл толщиной до 5 мм спаривают с нодог репом до темпе-  [c.346]

Термо-механическая обработка стали — нагрев до аустенитного состояния, деформация стали в аустеннт-ном состоянии (в стабильном состоянии — выше Ас или в нестабильном переохлажденном состоянии) и окончательное охлаждение с протекающим при этом превращением наклепанного аустенита.  [c.232]

Практически, и это оказывается не совсем 11ло о, так как имеется пауза — интервал времени от конца деформации до начала закалочного охлаждения, во время которой происходит рекристаллизация аустенита. Оптимальные результаты достигаются тогда, когда пауза достаточна, чтобы полностью протекала первая стадия ])екристаллизации, т. е. наклеп был бы снят и образовались мелкие рекристаллизован-ные зерна аустенита. Выдержка (пауза) сверх той, которая необходима для завершения пер-внчнон рекристаллизации приводит к росту зерна и ухудшению свойств. Очевидно, продолжительность паузы зависит от состава стали, температуры, степени деформации и других факторов. Поскольку при таком варианте ВТМО упрочняющего металл наклепа не создается, то и обычного упрочнения (повышения  [c.283]

Внутренние напряжения первого рода, влияние которых особенно существенно, так К31К только они вызывают коробление детали п трещины, зависят не только от внешних факторов (скорость охлаждения, размер и форма детали н т. д.), но и от свойств металла. Если металл обладает малой пластичностью, то возникающие внутренние напряжения не разряжаются пластической деформацией, и если напряжения по величине превзойдут значение предела прочности, то возникнут трещины.  [c.301]

Практически аустенит с 18% Сг и 8—10% Ni неустойчив, охлаждение его в области отрицательных температур или пластическая деформация при комнатной температуре вызовут образоьание мартенсита. В сплаве с 18% Сг и 10—12% N4  [c.485]

На рис. 5.5 представлены схемы выполнения сварки по суперпроходам, принятые при расчете ОСН. Последовательность наложения суперпроходов соответствовала последовательности выполнения проходов в реальном процессе сварки. Основной металл (перлитная сталь 12НЗМД) и аустенитный сварочный материал принимались для всех анализируемых соединений одинаковыми. Теплофизические свойства — теплопроводность X и объемная теплоемкость су — принимались независимыми от температуры, равными Я = 32,3 Вт/(м-град), су = 3,8-10 Дж/(м -град) для основного металла и i = 14,7 Вт/(м-град), су = 4,6- 10 Дж/(м -град) для аустенитного металла шва. Используемые при решении термодеформационной задачи зависимости температурной деформации е , модуля упругости Е (одинаковая зависимость для основного металла и металла шва) и предела текучести ат приведены соответственно на рис. 5.6. и 5.7. Так как аустенит не претерпевает структурных превращений, для него зависимости От и е от температуры на стадии нагрева и охлаждения одинаковые. Основной металл претерпевает структурные превращения, и, так как сварочный термический цикл далек от равновесного (большие скорости нагрева и охлаждения), температурный интервал Fe — Fev-превращения от T l до Ти (см. рис. 5.6) при нагреве не совпадает с интервалом  [c.282]

Точный платиновый термометр сопротивления, который обсуждался в предшествующих разделах, является тонким и хрупким прибором. Механические сотрясения, даже не столь сильные, чтобы повредить кожух, вызывают напряжения в чувствительном элементе и увеличивают его сопротивление. В некоторых конструкциях термометров повторные сотрясения в осевом направлении могут привести к сжатию витков проволоки и в конечном счете к замыканию между витками. Помимо этих деликатных приборов, существуют также технические платиновые термометры сопротивления, конструкция которых выдерживает использование в нормальных производственных условиях. Выпускается множество самых различных типов технических термометров. Общим для всех них является то, что чувствительный элемент прочно закреплен, а часто просто заделан в стекло или керамику. Это Делает термометр исключительно прочным, но в то же время пбнижaJeт стабильность его сопротивления. Причин относительной нестабильности сопротивления по сравнению с точным лабораторным термометром две. Во-первых, чередование нагрева и охлаждения приводит к тому, что вследствие различия в коэффициенте теплового расщирения у платины и материала, охватывающего проволоку, чувствительный элемент испытывает напряжения, приводящие к изменению его сопротивления, и возникают остаточные деформации, которые также сказываются на величине сопротивления. Влияние механических напряжений можно снять отжигом при достаточно высокой температуре, однако остаточные деформации устранить, разумеется, невозможно. Во-вторых, при высоких температурах происходит изменение сопротивления вследствие диффузионного загрязнения платины окружающим материалом. Хотя воспроизводимость результатов, получаемых с помощью технических платиновых термометров сопротивления, уступает воспроизводимости прецизионных платиновых термометров сопротивления, она существенно лучще, чем у термопар, работающих в условиях технологического процесса. По этой причине многие миллионы платиновых термометров сопротивления используются в технике, промыщленности, авиации и т. д.  [c.221]

Внутренние остаточные напряжения возникают в процессе быстрого нагрева пли охлаждения металла вследствие неоднородного расширения (сжатия) поверхностных и внутренних слоев. ги напряжения называюг тепловыми или термическими. 1 юме того, напряжения появляются в процессе кристалли ацип, при неоднородной деформации, при термической обработке вследствие неоднородного протекания структурных превращений по объему и т. д. Их называют фазовыми или структурными.  [c.43]


При этих температурах деформация также вызывает упрочнение ( горячий наклеп ), которое полностью или частично снимается рекристаллизацией, протекающей при температурах обработки и при последующем охлаждении. В случае поли-гонизации упрочнение частично сохраняется. В отличие от статической полигопиза-цин и рекристаллизации, рассмотренных ранее, процессы полигоиизации и рекристаллизации, происходящие в период деформации, называют динамическими.  [c.60]


Смотреть страницы где упоминается термин Деформация охлаждении : [c.172]    [c.444]    [c.433]    [c.485]    [c.230]    [c.250]    [c.85]    [c.278]    [c.60]    [c.138]   
Тепловая микроскопия материалов (1976) -- [ c.198 ]



ПОИСК



Определение зависимости температурных деформаций шпиндельного узла вертикальнофрезерного станка от времени работы и охлаждения

Определение зависимости температурных деформаций шпиндельной бабки токарного станка от времени его р-аботы и охлаждения

Особенности механизма рекристаллизации в зависимости от условий горячей деформации и охлаждения

Уменьшение сварочных деформаций, напряжений и перемещений 59 - Конструирование 59 - Нагревы и охлаждения неравномерные 60 - Пластическое деформирование 60 - Термическая обработка 61 Технология и сварка



© 2025 Mash-xxl.info Реклама на сайте